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Abstract

We study the optimal biased design of dynamic multi-battle team contests, in which

two asymmetric teams compete over a series of battles with a majoritarian objective.

The designer can impose a treatment to bias each battle contest in order to max-

imize the expected aggregate effort. With full homogeneity, the optimal bias fully

balances each battle contest, i.e., players are equally likely to win a battle, regardless

of the previous outcomes. By introducing outcome-dependent heterogeneity, the his-

tory independence result collapses. Nevertheless, we propose a general program whose

solution yields the optimal outcome-dependent biases. In this case, we show that the

full-balance rule is no longer effort-maximizing generically, even when all players are

fully homogeneous. This indicates that outcome-dependent heterogeneity plays a cru-

cial role in determining the optimal biases of dynamic contests.
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1 Introduction

Sequential multi-battle contests are commonly observed in reality and have been exten-

sively studied in the literature.1 Some of the studies focus on multi-battle individual contests,

in which the same two players compete against each other over a series of confrontations.2

While others consider the setting of multi-battle team contests, in which players from two

teams form pairwise matches to compete head-to-head in their own battles.3 In this pa-

per, we examine how an effort-maximizing designer optimally biases a dynamic majoritarian

multi-battle team contest, which is a natural counterpart of the work by Barbieri and Serena

(2022) who analyze the effort-maximizing biases in a dynamic multi-battle contest between

two individuals.

It is well understood that, in a single-round individual contest, the contest designer

can level the playing field to fuel the competition by favoring the weaker. However, to

what extent this insight can be extended to a dynamic contest between asymmetric teams

remains less clear.4 In this paper, we attempt to shed light on the general question by

first considering a dynamic multi-battle team contest. In such a contest, two teams with

asymmetric valuations compete overN pairwise battles sequentially under the best-of-N rule,

where N can be any positive odd number. The designer can influence contestants’relative

competitiveness in battles by imposing the multiplicative biases to rescale contestants’effort

entries. Our research question is how an effort-maximizing designer optimally biases such a

dynamic multi-battle contest between two asymmetric teams.

A key feature of a dynamic setting is the observability of the history. As the contest

unfolds, previous outcomes become known to the public, which naturally leads to a greater

number of contingencies that must be taken into account. To capture this feature, we con-

1For instance, in legislative elections, candidates from two major parties compete for legislative seats and
the party with a majority of the seats gains the control of legislature, e.g., Republicans and Democrats in
an election for the House of Representatives (see, e.g., Snyder (1989) and Klumpp and Polborn (2006)); In
sports between teams, the best-of-N rule is prevalent, i.e., the final winner is the one accumulating majority
battle wins, such as tennis matches and the National Basketball Association’s Finals playoff series (see, e.g.,
Ferrall and Smith (1999) and Malueg and Yates (2010)); In parent races, opponent research teams compete
and a team can patent an invention that consists of suffi cient technological breakthroughs (see, e.g., Harris
and Vickers (1987)), among others.

2See, for instance, Konrad and Kovenock (2009), Feng and Lu (2018), and Klumpp, Konrad, and Solomon
(2019).

3See, for example, Fu, Lu, and Pan (2015), Häfner (2017), Barbieri and Serena (2019), and Feng, Jiao,
Kuang, and Lu (2023).

4In the literature review, we will provide a more detailed discussion of studies on optimal biases in dynamic
contests.
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sider both homogeneous and heterogeneous cases. For homogeneous case, both the contest

technology and the choice of bias remain the same, regardless of the revealed outcomes. We

further allow that the contest technology and/or the bias can be contingent on the previ-

ous battle outcomes, which we refer to as outcome-dependent heterogeneity. For the sake

of generality, we adopt a generalized Tullock contest technology to model each battle, i.e.,

the discriminatory power r ∈ [0,+∞). A question naturally arises here: Whether the con-

ventional wisdom of levelling the playing field can be extended to such a dynamic contest

between two asymmetric teams in the presence of homogeneity/heterogeneity.

In our model, two teams containing an equal number of players compete over N pairwise

battles sequentially: each player of one team fights against his opponent from the rival team

in a battle, as a result, each player bears the effort cost of that battle only. Players are

homogeneous within a team in terms of their marginal effort costs. As battles are played

sequentially, players can observe the outcomes of previous battles, i.e., the state of contest

(n1, n2), where ni denotes the number of battle wins secured by team i. A best-of-N rule is

applied to determine the winning team, that is, the team accumulating a majority of battle

wins is rewarded with the final trophy. We assume that players within the same team value

the team’s win equally, which is equivalent to assume that the team’s prize would be divided

equally among its players. Our model is inherited from Fu, Lu, and Pan (2015) but differ

from their setting in two aspects. First, we allow asymmetric teams, i.e., two teams can value

the final trophy differently. Second, this outcome-dependent heterogeneity is state-specific,

which directly causes the failure of history independence result.5

In an one-shot contest, the total effort put forth by players is determined by the their

valuations of winning, the contest technology, as well as the bias chosen. To analyze a

dynamic contest, we propose a recursive formula to track players’incentives, i.e., their prize

spreads. As a by-product, we extend a key observation of Fu, Lu, and Pan (2015) into an

asymmetric contest between two teams. That is, despite the paired players having different

prize spreads, they always have a common adjusted prize spread, regardless of the state of

the contest.6 We then apply the recursive approach to determine the adjusted prize spreads

across the states, which enables us to characterize the expected total effort functions for

homogeneous/heterogeneous cases. On that basis, we derive the optimal biases in both

cases. In particular, we find that a player’s prize spread at a state is completely determined

5We will also discuss the differences in the literature review.
6Specifically, the adjusted prize spread equals a player’s prize spread divided by his team’s valuation of

winning the whole contest.
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by the winning probabilities at attainable states in subsequent battles.

With homogeneous battles, the optimal bias completely counterbalances the asymmetry

between the paired players that is inherited from their teams. Put differently, the full-balance

rule– two paired players always have equal chance to win a battle– is effort-maximizing,

regardless of the previous outcomes and players’prize spreads. This result echoes the existing

findings in the literature on biased design in one-shot contests: A level playing field would

maximize the competition. Our analysis shows that even though there is no loss to focus on

a single battle to characterize the optimal bias, the intuition is different: The optimal bias

not only intensifies the competition in each battle at a given state, but also maximizes the

likelihood of attaining a balanced state, e.g., (k, k) in a contest with N = 2k + 1 battles.

With outcome-dependent heterogeneity (i.e., contest technologies and/or biases can vary

with the revealed battle outcomes), it is worth to noting that history-independence result

collapses.7 As a consequence, the conventional approach to compute total effort is no longer

applicable. To derive total effort in this case, we trace each possible history by introducing

two concepts, path and adjusted path. Path is utilized to compute the probability of attain-

ing a state, whereas adjust path is used to determine players’incentives at possible states.

After characterizing the total effort function, we formulate a general multi-dimensional pro-

gram whose solution yields the optimal biases. This approach offers a practical method for

computing the optimal design numerically. We further simplify the general program into

a system of single-dimensional subproblems, which enables us to establish several useful

properties about the optimal biases. In particular, we prove that the full-balance rule is no

longer effort-maximizing generically in the presence of the outcome-dependent heterogene-

ity. In other words, by introducing state-specific heterogeneity (e.g., the contest technology

varies with the state), players in general do not have equal chance to win a battle under the

optimal design, even all players are fully homogeneous in terms of their marginal effort costs.8

Compared to the homogeneous case, the result implies that state-specific heterogeneity could

be a key factor in determining the optimal biases.

In dynamic team contests with outcome-dependent heterogeneity, the optimal biases

7History-independence result means that the outcomes of past battles do not distort the winning proba-
bilities in future battles. In particular, it requires that a team’s equilibrium probability of winning a battle
remains a constant regardless of the revealed state. However, when r varies with the state (n1, n2) and/or
α is allowed to be contingent on (n1, n2), the winning probability depends on both r and α, and therefore
the state.

8We sometimes also call outcome-dependent heterogeneity as state-specific heterogeneity, since state is
defined as the previous battle outcomes in our model.
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should not only counterbalance the asymmetry between players, but also manage this het-

erogeneity over the states. Our result reveals that there is a trade-off in achieving the two

goals, since full-balance rule completely eliminates the asymmetry of each battle contest but

remains suboptimal in eliciting efforts in the presence of the outcome-dependent heterogene-

ity. This further indicates that outcome-dependent heterogeneity that is not displayed in an

one-shot contest could be crucial in affecting the optimal biased design of a dynamic contest.

A 3-battle Example: To see how this outcome-dependent heterogeneity impacts on the

design of the optimal biases, consider a 3-battle contest between two symmetric teams, as-

suming that players are fully homogeneous. We introduce outcome-dependent heterogeneity

in the following way: The second battle would be an all-pay contest if team A wins a battle;

a lottery contest is applied for all other remaining states/battles. Equivalently, r(1, 0) = +∞
and r(0, 0) = r(0, 1) = r(1, 1) = 1. In this example, it is optimal to favor team A tremen-

dously in the first battle (i.e., α(0, 0) = +∞) so that the contest would certainly move to
an all-pay contest in the second battle, in which two players would be treated equally, i.e.,

α(1, 0) = 1. To further intensify the competition, the designer should favor team B as much

as possible in third battle when there is a tie (i.e., α(1, 1) = 0), as it would incentivize team

A in the second battle, which is an all-pay contest. Applying the aforementioned biases

(α(0, 0) = +∞, α(1, 0) = 1, α(1, 1) = 0, and α(0, 1) can be any positive value), the team

contest boils down to an individual contest wherein two players compete against each other

in a symmetric all-pay contest, which yields the greatest effort. More generally, we resort to

the general program (12) to search for the optimal biases.

Related literature: This paper belongs to the interaction of three streams of literature:
dynamic contests, group contests, and the design of biased contests.

On dynamic contest, a stream of literature focuses on the competition between two indi-

viduals wherein the same two players sequentially interact in all battles, including Harris and

Vickers (1987), Snyder (1989), Ferrall and Smith (1999), Klumpp and Polborn (2006), Kon-

rad and Kovenock (2009), McFall, Knoeber, and Thurman (2009), Malueg and Yates (2010),

Sela (2011), Gelder (2014), Gelder and Kovenock (2017), Klumpp, Konrad, and Solomon

(2019), and Gauriot and Page (2019), among others.9 Many of those works consider majori-

tarian multi-battle individual contests and identify the strategic momentum/discouragement

effect in their settings, i.e., an initial lead incentivizes an early winner but discourages an

early loser in subsequent battles. In particular, Klumpp, Konrad, and Solomon (2019) ex-

9Other papers focus on prize designs in dynamic contests between individual players, including Feng and
Lu (2018); Jiang (2018); Sela and Tsahi (2020); and Clark and Nilssen (2020), among others.
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amine the sequential majoritarian Blotto contest, in which the same two players sequentially

interact in a series of battles with an arbitrary odd length. While our paper focuses on

the sequential majoritarian team contests with arbitrary odd battles wherein players of two

teams form pairwise matches to compete head-to-head in their own battles.

Our paper is also related to the literature on group/team contests. Many studies model

the team competition by using an index to represent players’efforts within a team (e.g.,

aggregating players’ efforts), including Baik, Kim, and Na (2001), Barbieri, Malueg, and

Topolyan (2014), Topolyan (2014), Chowdhury, Lee, and Topolyan (2016), Eliaz and Wu

(2018), Crutzen, Flamand, and Sahuguet (2020), Fu and Lu (2020), Arbatskaya and Kon-

ishi (2021), and Cubel and Sanchez-Pages (2022), etc.10 While we consider a best-of-N

team contest with pairwise battles, in which battles are played sequentially and the final

trophy is determined by a team’s number of battle wins. The multi-battle team contest

is a natural counterpart of multi-battle individual contest. More importantly, the momen-

tum/discouragement effect that prevails in dynamic multi-battle individual contests does

not exist in multi-battle team contests. This allows us to better understand the role of the

momentum/discouragement effect in affecting the optimal biases of dynamic contests.

Our team contest model is built on Fu, Lu, and Pan (2015) and analyzed later by Häfner

(2017), Barbieri and Serena (2019), Feng, Jiao, Kuang, and Lu (2023) among others.11 In

terms of model setup, we differ from the aforementioned studies in two aspects. First,

we allow asymmetric teams, as a result, two matched players no longer equally value the

win of a battle.12 Even though, we establish that paired players always have the same

adjusted value of winning a battle.13 Second, with outcome-dependent heterogeneity, the

history independence result no longer holds. This is because when the biases and/or contest

technology vary with the state of the contest, the observability of the history plays a role in

affecting players’incentives.

The biased design has been extensively studied in the setting of static contests, see, e.g., Li

and Yu (2012), Franke, Kanzow, Leininger, and Schwartz (2013), Drugov and Ryvkin (2017),

Franke, Kanzow, Leininger, and Schwartz (2014), Franke, Leininger, and Wasser (2018), Fu

10Many of these works also assume that a team’s trophy is a public good among its team players.
11Häfner (2017) considers a tug-of-war team contest, Barbieri and Serena (2019) examine the temporal

structure by focusing on the winner’s effort, and Feng, Jiao, Kuang, and Lu (2023) analyse the optimal prize
allocation rule.
12As a consequence, Theorem 1 of Fu, Lu, and Pan (2015) is no longer applicable in our model.
13The adjusted value equals a player’s prize spread divided by his team’s value of winning the whole

contest. We will formally introduce the concept in Definition 5.
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and Wu (2020), Deng, Fu, and Wu (2021) among others.14 Franke, Leininger, and Wasser

(2018) and Fu and Wu (2020) consider both additive headstarts and multiplicative biases in

static contests with multiple individual players. In particular, Fu and Wu (2020) show that

the contest designer does not benefit from giving headstarts to contestants. In contrast to

these works, we consider a dynamic setting.

There also exist studies concerning biases in dynamic contests, including Meyer (1991),

Meyer (1992), Ederer (2010), etc.15 For instance, Meyer (1991) consider a multi-stage setting

wherein two players compete for a single prize and establishes the result of “favor-the-lead”,

i.e., the optimal final-period bias is in the favor of the leader. In a two-stage setting, Clark,

Nilssen, and Sand (2012), Möller (2012), Beviá and Corchón (2013), Esteve-González (2016),

and Klein and Schmutzler (2017) consider a competition between two individuals in which

the first-stage winner is awarded an advantage status in the second-stage competition.16

Fu and Wu (2022) consider a two-stage elimination contest, in which the organizer can

bias the second-stage competition based on finalists’interim rankings. Barbieri and Serena

(2022) study a best-of-three contest between two ex-ante symmetric individuals and consider

both the victory-dependent biases and victory-independent biases, which are called outcome-

dependent and outcome-independent biases in our context, respectively.17 We differ from

these studies by considering dynamic team contests with pairwise battles. The convenience

of the setting allow us to consider arbitrary odd battles, generalized Tullock contest technolo-

gies, and outcome-dependent heterogeneity, i.e., the biases and/or the contest technologies

can vary with the state of the contest.

Our work complements Barbieri and Serena (2022). They study the optimal biases of

a dynamic multi-battle individual contest wherein the same two ex ante symmetric players

compete against each other in all battles.18 An important feature of multi-battle individual

contests is the momentum/discouragement effect, which is absent in multi-battle team con-

14While many other studies focus on the (additive) headstart, e.g., Clark and Riis (2000), Konrad (2002),
Siegel (2009), Kirkegaard (2012), and Siegel (2014).
15Ederer (2010) examines the feedback policy in a two-stage contest and consider one case wherein the

agent’s production function takes the multiplicative form.
16Ridlon and Shin (2013) show that if employees’abilities are suffi ciently different, favoring the first-period

loser in the second period increases the total effort over both periods. However, if abilities are suffi ciently
similar, total effort increases the most in response to a handicapping strategy of favoring the first-period
winner.
17Feng and Lu (2018) focus on the optimal prize allocation in a best-of-three individual contest.
18Barbieri and Serena (2022) additionally consider winner’s effort maximization, while we focus on total

effort maximization by allowing arbitrary odd battles and outcome-dependent heterogeneity.
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tests.19 Comparing to Barbieri and Serena (2022), we further confirm that the momentum

effect plays a role in designing the effort-maximizing biases in dynamic contests: Barbieri

and Serena (2022) show that the optimal victory-independent biases do not leave players

equally likely to win the overall contest, due to momentum effect. In contrast, with homo-

geneous battles, we prove that two matched players always have the same chance to win

each battle under the optimal design, and therefore two teams are equally likely to win the

whole contest. Moreover, by allowing the biases and/or the contest technologies vary with

the state of the contest, we find that this state-specific heterogeneity could also be a key

factor in determining the optimal biases. This kind of heterogeneity is not displayed in static

contests and many dynamic contests with homogeneous battles.

The remainder of this paper is organized as follows. In Section 2, we introduce the basic

contest model. In Section 3, we study an one-shot contest and consider 3-battle and 5-battle

contests as examples. In Section 4, we analyze a general dynamic contest between two teams

with N = 2k + 1 pairwise battles. Specifically, in Section 4.1, we characterize the effort-

maximizing bias explicitly for homogeneous case. In Section 4.2, when outcome-dependent

heterogeneity is introduced, we offer a general program to search for the optimal vector of

biases. On that basis, we establish several useful properties of the effort-maximizing biases.

Section 5 provides discussions and concludes.

2 Model

Consider two teams, indexed by A and B, compete in a contest with N = 2k+1 pairwise

battles, where k ∈ Z+. Each team consists of 2k + 1 risk-neutral players. Players from

opposing teams are paired up and compete against each other in their own individual battles.

This means that each player only participates and fights in his own battle. We denote player

A(t) (resp. B(t)) as the one assigned by team A (resp. B) in battle t ∈ {1, ..., 2k + 1}.
The overall outcome of the whole contest is determined by the results of individual battles

through majority rule, i.e., a team wins the final trophy if and only if it secures at least k+1

battle wins.20

Denote team A’s valuation (B’s valuation) from winning the whole contest by vA (resp.

19It is shown in Fu, Lu, and Pan (2015) that the momentum/discouragement effect is absent in a multi-
battle team contest with symmetric teams.
20The majority rule is popular in both theory and practice, e.g., Klumpp and Polborn (2006), Klumpp,

Konrad, and Solomon (2019), Barbieri and Serena (2022), and Feng, Jiao, Kuang, and Lu (2023), etc.
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vB). Throughout the paper, we assume that the team prize is a public good, i.e., all players

within the same team value the team prize equally. It is equivalent to assume that the team

prize will be divided equally among its team players. We model each component battle as a

Tullock contest with an arbitrary r ∈ (0,+∞].21

We assume that the 2k + 1 disjoint battlefields are played successively. To track the

history of battle outcomes, we denote (n1, n2) the state of contest, where n1 is the number of

battle wins secured by team A and n2 is the number of battle wins secured by team B. At

state (n1, n2), player A(t)’s (resp. B(t)) valuation of winning battle t is ∆uA(n1, n2) (resp.

∆uB(n1, n2)), where t = n1 + n2 + 1.

3 Analysis

We begin our analysis by considering a battle contest. In an arbitrary battle t, two

players A(t) and B(t) compete in a biased Tullock contest. Specifically, player A(t)’s winning

probability is given by pA(t) = αxrA(t)/
(
αxrA(t) + xrB(t)

)
if at least one player spends positive

effort. Player A(t)’s (resp. B(t)) valuation of winning battle t is ∆uA (resp. ∆uB). We

assume unity effort cost. Player A(t) chooses effort xA(t) to maximize

αxrA(t)

αxrA(t) + xrB(t)

∆uA − xA(t).

Likewise, player B(t) chooses effort xB(t) to maximize

xrB(t)

αxrA(t) + xrB(t)

∆uB − xB(t).

Suppose that ∆uA(t)/vA = ∆uB(t)/vB, where vA and vB are exogenously given.22 We

denote

∆u := ∆uA/vA = ∆uB/vB.

In the following property, we show that the sum of the expected efforts in battle t is always

proportional to the adjusted valuation of winning battle t, ∆u.

21We will allow r to be contingent on the state in our general analysis.
22We establish that ∆uA(t)/vA = ∆uB(t)/vB in dynamic team contests with pairwise battles in Lemma 3.
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Property 1. In battle t, the expected effort from both players equals

E [xA + xB] = β (vA, vB, α, r) ∆u, (1)

where β (vA, vB, α, r) only depends on vA, vB, α, r, rather than the players’prize spreads, ∆uA

and ∆uB.

Proof. To prove the property, we derive the players’equilibrium effort. To do so, we trans-

form the biased Tullock contest into a non-biased one by adjusting player A(t)’s valuation.

The equilibrium strategies in the later game are summarized in Lemma 1 in Feng and Lu

(2018). The proof details and the analytical derivation of β (vA, vB, α, r) are provided in the

appendix.

For r ∈ (0,+∞), when α1/r∆uA ≥ ∆uB, i.e., α1/rvA ≥ vB,

β (vA, vB, α, r) =


rαvrAv

r
B

(αvrA+vrB)
2 (vA + vB) if r ≤ r̂( vB

α1/rvA
),

( 1
r−1

)
1
r (1− 1

r
) vB
α1/r

(
1 + vB

vA

)
if r ∈ (r̂( vB

α1/rvA
), 2],

1
2α1/r

(
1 + vB

vA

)
vB if r ∈ (2,+∞);

when ∆uB > α1/r∆uA, i.e., vB > α1/rvA,

β (vA, vB, α, r) =


rαvrAv

r
B

(αvrA+vrB)
2 (vA + vB) if r ≤ r̂(α

1/rvA
vB

),

( 1
r−1

)
1
r (1− 1

r
)α1/r

(
1 + vA

vB

)
vA if r ∈ (r̂(α

1/rvA
vB

), 2],

α1/r

2

(
1 + vA

vB

)
vA if r ∈ (2,+∞).

For r = +∞, when αvA ≥ vB, β (vA, vB, α, r) = 1
2α

(
1 + vB

vA

)
vB; when vB ≥ αvA,

β (vA, vB, α, r) = α
2

(
1 + vA

vB

)
vA.

Property 1 says that the total effort exerted in each battle is proportional to the adjusted

prize spread ∆u. Given an arbitrary r ∈ (0,+∞), it follows from the characterization of

β (vA, vB, α, r) that the sum of efforts in a one-shot contest is maximized when ∆uB =

α1/r∆uA, which implies that the optimal bias in battle t is α∗ = (∆uB/∆uA)r = (vB/vA)r

using the definition ∆u := ∆uA/vA = ∆uB/vB. Analogously, given r = +∞, the sum of

efforts is maximized when α∗ = vB/vA. We summarize the result in the following.
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Lemma 1. In a single battle, the effort-maximizing bias is α∗One-shot (r) =

{
(vB/vA)r , if r ∈ (0,+∞)

vB/vA, if r = +∞
.

To move on to a dynamic contest, we introduce the following notations. We use VA(n1, n2)

(resp. VB(n1, n2)) to denote the continuation value of team A (resp. team B) at state

(n1, n2). At state (n1, n2), player A(t)’s effective prize spreads of winning the current battle

is ∆uA(n1, n2) = VA(n1 + 1, n2)− VA(n1, n2 + 1) and player B(t)’s effective prize spreads of

winning this battle is ∆uB(n1, n2) = VB(n1, n2 + 1) − VB(n1 + 1, n2). Given players’prize

spreads ∆uA(n1, n2) and ∆uB(n1, n2), we compute their equilibrium efforts in this battle at

state (n1, n2) using Property 1. Equipped with the notations, we analyze a best-of-three

contest between two teams in the following.

Example 1. A Best-of-three Team Contest

Consider a 3-battle team contest, i.e., k = 1, each battle is modelled as a Tullock contest

with r ∈ (0, 1].23 If battles are homogeneous, i.e., α and r are the same across the state

(n1, n2), the resulting total effort equals

TEHomo,k=1(α, r) = 6pApB
αrvrAv

r
B (vA + vB)

(αvrA + vrB)2
,

where pA =
αvrA

αvrA+vrB
and pB =

vrB
αvrA+vrB

.

Proof. We solve the game backwards. For that, we compute players’effective prize spreads

and their equilibrium efforts at each possible state (1, 1), (1, 0), (0, 1), (0, 0) as well as the

probability of each state, respectively. The expected aggregate effort equals the weighted

sum of the efforts at these states. Calculation details are relegated to subsection 5.2 in the

appendix.

More generally, when outcome-dependent heterogeneity is introduced, i.e., r can differ

across the state (n1, n2) and/or α is allowed to be contingent on (n1, n2). For r(n1, n2) ∈
(0, 1], the resulting total effort equals

TEHete,k=1(α, r) = [pA(1, 0)pB(1, 1) + pB(0, 1)pA(1, 1)] β (0, 0)

+pA(0, 0)pB(1, 1)β (1, 0) + pB(0, 0)pA(1, 1)β (0, 1)

23In our general analysis, r can be any value within (0,+∞].
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+[pA(0, 0)pB(1, 0) + pB(0, 0)pA(0, 1)]β (1, 1) ,

where pA(n1, n2) =
α(n1,n2)v

r(n1,n2)
A

α(n1,n2)v
r(n1,n2)
A +v

r(n1,n2)
B

and β (n1, n2) =
rα(n1,n2)v

r(n1,n2)
A v

r(n1,n2)
B(

αv
r(n1,n2)
A +v

r(n1,n2)
B

)2 (vA + vB).

Proof. We characterize the subgame perfect equilibrium of this 3-battle contest by backward

induction. Details are relegated to subsection 5.3 in the appendix.

We next analyze a best-of-five team contest, i.e., k = 2.

Example 2. A Best-of-five Team Contest

Consider a team contest with 5 pairwise battles. The winning team is the team with at

least three wins.

(i) With homogeneous battles, when each battle is modelled as a Tullock contest with

r ∈ (0, 1], the expected aggregate effort equals

TEHomo,k=2(α, r) = 30p2
Ap

2
B

αrvrAv
r
B (vA + vB)

(αvrA + vrB)2
,

where pA =
αvrA

αvrA+vrB
and pB =

vrB
αvrA+vrB

.

(ii) With outcome-dependent heterogeneity, when r(n1, n2) can be any value within (0, 1],

the expected aggregate effort equals

TEHete,k=2(α, r) = TE(0, 0)

+pA(0, 0)TE(1, 0) + pB(0, 0)TE(0, 1)

+P (2, 0)TE(2, 0) + P (0, 2)TE(0, 2) + P (1, 1)TE(1, 1)

+P (2, 1)TE(2, 1) + P (1, 2)TE(1, 2)

+P (2, 2)TE(2, 2),

where

TE(0, 0) =

 pA(1, 0)pA(2, 0)pB(2, 1)pB(2, 2) + pA(1, 0)pB(1, 1)pA(2, 1)pB(2, 2)

+pA(1, 0)pB(1, 1)pB(1, 2)pA(2, 2) + pB(0, 1)pA(1, 1)pA(2, 1)pB(2, 2)

+pB(0, 1)pA(1, 1)pB(1, 2)pA(2, 2) + pB(0, 1)pB(0, 2)pA(1, 2)pA(2, 2)

 β (0, 0) ;

12



TE(1, 0) =

[
pA(2, 0)pB(2, 1)pB(2, 2) + pB(1, 1)pA(2, 1)pB(2, 2)

+pB(1, 1)pB(1, 2)pA(2, 2)

]
β (1, 0) ;

TE(0, 1) =

[
pA(1, 1)pA(2, 1)pB(2, 2) + pA(1, 1)pB(1, 2)pA(2, 2)

+pB(0, 2)pA(1, 2)pA(2, 2)

]
β (0, 1) ;

TE(2, 0) = pB(2, 1)pB(2, 2)β (2, 0) ;

TE(0, 2) = pA(1, 2)pA(2, 2)β (0, 2) ;

TE(1, 1) = (pA(2, 1)pB(2, 2) + pB(1, 2)pA(2, 2)) β (1, 1) ;

TE(2, 1) = pB(2, 2)β (2, 1) ;

TE(1, 2) = pA(2, 2)β (1, 2) ;

TE(2, 2) = β (2, 2) ,

and P (n1, n2) is the probability of reaching the state (n1, n2) from (0, 0). For example,

P (2, 0) = pA(0, 0)pA(1, 0), P (0, 2) = pB(0, 0)pB(0, 1), and P (1, 1) = pA(0, 0)pB(1, 0) +

pB(0, 0)pA(0, 1).24

Proof. We characterize the subgame perfect equilibrium by backward induction. Details are

relegated to subsections 5.4 and 5.5 in the appendix.

When k = 1, 2, we derive the expressions of TEHomo,k(α, r) and TEHete,k(α, r) for r ∈
(0, 1] in Examples 1 and 2, respectively. Our examples reveal two diffi culties in characterizing

the optimal biases that maximize the expected aggregate effort for general cases. First, it is

not an easy task to derive the explicit formulas of TEHomo,k(α, r) and TEHete,k(α, r) for a

general k and an arbitrarily given r ∈ (0,+∞]. Solving for such a contest with 2k+1 battles

requires tracking players’incentives, computing their equilibrium efforts along each possible

path, and determining the probability of each path. Consequently, the computation steps

are inevitably long for a large k.25 Second, given that the expression of the aggregate effort is

suffi ciently complicated, e.g., TEHete,k=2(α, r) in Example 2(ii), it is challenging to establish

a general property of the optimal biases. Despite of the diffi culties, we characterize the

expected aggregate effort, identify the optimal bias for homogeneous case, and derive several

24We will formally introduce Definition 3 in Section 4.2 to compute P (n1, n2) for general cases.
25See, for example, the proof of Example 2 in Section 5.5 in the appendix.
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useful properties of the optimal outcome-dependent biases in the presence of heterogeneity

in Section 4.

4 General Analysis for 2k+1 Battles

In this section, we consider a general dynamic contest between two teams with 2k + 1

pairwise battles, where k can be any positive integer. A team wins if and only if it wins at

least k+ 1 out of 2k+ 1 battles. To solve the expeced aggregate effort for such a contest, we

compute players’equilibrium efforts at each possible state as well as the probability of each

state. The solution concept is subgame perfect equilibrium. We will solve the contest game

backwards.

To compute players’efforts, we track players’incentives. Specifically, we will compute

their prize spreads at each possible state (n1, n2) ∈ S, where S is defined as an collection
containing all possible states:

S := {(n1, n2)|0 ≤ n1, n2 ≤ k + 1, and n1 + n2 ≤ 2k + 1}. (2)

We further define the following set E ( S as the collection of all ending nodes:

E := {(n1, n2)|ni = k + 1 and 0 ≤ nj ≤ k − 1}.

A player’s prize spread of winning battle t = n1 + n2 + 1 equals zero at an ending node, i.e.,

∆uA(n1, n2) = 0 and ∆uB(n1, n2) = 0 at each (n1, n2) ∈ E. This is because n1 = k+1 (resp.

n2 = k + 1) means that team A (resp. team B) wins the entire contest by accumulating a

majority number of battle wins.

At (k, k), it is straightforward to check ∆uA(k, k) = vA and ∆uB(k, k) = vB. For other

remaining states, we define G as the collection of all possible states excluding the ending

nodes E and (k, k). Specifically,

G := S/(E ∪ (k, k)) = {(n1, n2)|n1, n2 ∈ Z, 0 ≤ n1, n2 ≤ k, and n1 + n2 ≤ 2k − 1}.

The collection of all possible states S can be partitioned into the collections E, {(k, k)},
and G, i.e., S = E ∪ {(k, k)} ∪ G. For each (n1, n2) ∈ G, we now provide the following

recursive formula to compute the players’prize spreads.

14



Lemma 2. For (n1, n2) ∈ G, players’effective prize spreads obey the following relation:

∆uA(n1, n2) = pA(n1 + 1, n2)∆uA(n1 + 1, n2) + pB(n1, n2 + 1)∆uA(n1, n2 + 1);

∆uB(n1, n2) = pA(n1 + 1, n2)∆uB(n1 + 1, n2) + pB(n1, n2 + 1)∆uB(n1, n2 + 1). (3)

Proof. Consider state (n1, n2) such that n1, n2 ≤ k− 1, we prove the result in the following.

∆uA(n1, n2)

= VA(n1 + 1, n2)− VA(n1, n2 + 1)

=
pA(n1 + 1, n2)VA(n1 + 2, n2) + pB(n1 + 1, n2)VA(n1 + 1, n2 + 1)

−pA(n1, n2 + 1)VA(n1 + 1, n2 + 1)− pB(n1, n2 + 1)VA(n1, n2 + 2)

=
VA(n1 + 1, n2 + 1) + pA(n1 + 1, n2) (VA(n1 + 2, n2)− VA(n1 + 1, n2 + 1))

−VA(n1, n2 + 2)− pA(n1, n2 + 1) (VA(n1 + 1, n2 + 1)− VA(n1, n2 + 2))

= ∆uA(n1, n2 + 1) + pA(n1 + 1, n2)∆uA(n1 + 1, n2)− pA(n1, n2 + 1)∆uA(n1, n2 + 1)

= pA(n1 + 1, n2)∆uA(n1 + 1, n2) + pB(n1, n2 + 1)∆uA(n1, n2 + 1).

We complete the proof by proving the result for remaining cases. The details are relegated

into the appendix.

Lemma 3. For any (n1, n2) such that n1, n2 ≤ k, we have

∆uA(n1, n2)/vA = ∆uB(n1, n2)/vB. (4)

Proof. At (k, k), ∆uA(k, k) = vA and ∆uB(k, k) = vB, and the formula holds automatically.

We prove the lemma by mathematical induction. For (n1, n2) such that n1, n2 ≤ k − 1,

suppose that the lemma holds for (n1 + 1, n2) and (n1, n2 + 1), it suffi ces to show that the

lemma holds for (n1, n2), which is true, since

∆uA(n1, n2) = pA(n1 + 1, n2)∆uA(n1 + 1, n2) + pB(n1, n2 + 1)∆uA(n1, n2 + 1);
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∆uB(n1, n2) = pA(n1 + 1, n2)∆uB(n1 + 1, n2) + pB(n1, n2 + 1)∆uB(n1, n2 + 1),

using Lemma 2. Details are provided in the appendix.

By Lemma 3, two matched players always share a common adjusted prize spread across

the states while its value may vary with the state. This result extends a key observation

of Fu, Lu, and Pan (2015) into an asymmetric contest between two teams. Assuming that

two teams value the final trophy equally, i.e., vA = vB = 1, Fu, Lu, and Pan (2015) show

that two matched players always have a common value of winning a battle, regardless of

the state. In contrast, we allow two teams to value the trophy differently, as a result, two

matched players have different valuations of winning a battle. Nevertheless, we reveal that

two matched players’valuations must obey (4), i.e., they always have a common adjusted

prize spread, which suffi ces to capture players’incentives. We formally introduce the notation

of the adjusted prize spread in the following.

Definition 1. (Common Adjusted Prize Spread) Define the adjusted prize spread at a state
(n1, n2) as

∆u(n1, n2) := ∆uA(n1, n2)/vA = ∆uB(n1, n2)/vB. (5)

From (5) and Property 1, one can easily solve for players’ equilibrium efforts at an

arbitrary state (n1, n2), given the adjusted prize spread ∆u(n1, n2). Up to now, we have

discussed how to simplify the way to solve players’ equilibrium effort in a battle at each

possible state (n1, n2) ∈ S. To derive the expected aggregate effort, it remains to derive the
winning probability of each battle at each possible state. We therefore present the following

result.

Lemma 4. For any (n1, n2) such that n1, n2 ≤ k, player A(t)’s winning probability of a
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battle is solely determined by vA, vB, α(n1, n2), r(n1, n2). More precisely,

pA(n1, n2) =



α(n1,n2)v
r(n1,n2)
A

α(n1,n2)v
r(n1,n2)
A +v

r(n1,n2)
B

,
if r ∈ (0, r̂( vB

[α(n1,n2)]1/r(n1,n2)vA
)]

and [α(n1, n2)]1/r(n1,n2) vA ≥ vB;

α(n1,n2)v
r(n1,n2)
A

α(n1,n2)v
r(n1,n2)
A +v

r(n1,n2)
B

,
if r ∈ (0, r̂( [α(n1,n2)]1/r(n1,n2)vA

vB
)]

and vB ≥ [α(n1, n2)]1/r(n1,n2) vA;

1−
(
1− 1

r

) (
1
r−1

)1/r vB
[α(n1,n2)]1/r(n1,n2)vA

,
if r ∈ (r̂( vB

[α(n1,n2)]1/r(n1,n2)vA
), 2]

and [α(n1, n2)]1/r(n1,n2) vA ≥ vB;(
1− 1

r

) (
1
r−1

)1/r [α(n1,n2)]1/r(n1,n2)vA
vB

,
if r ∈ (r̂( [α(n1,n2)]1/r(n1,n2)vA

vB
), 2]

and vB ≥ [α(n1, n2)]1/r(n1,n2) vA;

1− 1
2

vB
[α(n1,n2)]1/r(n1,n2)vA

,
if r ∈ (2,+∞)

and [α(n1, n2)]1/r(n1,n2) vA ≥ vB;

1
2

[α(n1,n2)]1/r(n1,n2)vA
vB

,
if r ∈ (2,+∞)

and vB ≥ [α(n1, n2)]1/r(n1,n2) vA.

1− 1
2

vB
α(n1,n2)vA

, if r = +∞ and α(n1, n2)vA ≥ vB;
1
2
α(n1,n2)vA

vB
, if r = +∞ and vB ≥ α(n1, n2)vA.

At state (n1, n2), player A(t)’s probability of winning this battle t is pA(n1, n2), which
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equals

α(n1,n2)[∆uA(n1,n2)]r(n1,n2)

α(n1,n2)[∆uA(n1,n2)]r(n1,n2)+[∆uB(n1,n2)]r(n1,n2)
,

if r ∈ (0, r̂( ∆uB(n1,n2)
α(n1,n2)∆uA(n1,n2)

)] and

[α(n1, n2)]1/r(n1,n2) ∆uA(n1, n2) ≥ ∆uB(n1, n2);

α(n1,n2)[∆uA(n1,n2)]r(n1,n2)

α(n1,n2)[∆uA(n1,n2)]r(n1,n2)+[∆uB(n1,n2)]r(n1,n2)
,

if r ∈ (0, r̂(α(n1,n2)∆uA(n1,n2)
∆uB(n1,n2)

)] and

∆uB(n1, n2) ≥ [α(n1, n2)]1/r(n1,n2) ∆uA(n1, n2);

1−
(
1− 1

r

) (
1
r−1

)1/r ∆uB(n1,n2)

[α(n1,n2)]1/r(n1,n2)∆uA(n1,n2)
,

if r ∈ (r̂( ∆uB(n1,n2)

[α(n1,n2)]1/r(n1,n2)∆uA(n1,n2)
), 2] and

[α(n1, n2)]1/r(n1,n2) ∆uA(n1, n2) ≥ ∆uB(n1, n2);(
1− 1

r

) (
1
r−1

)1/r [α(n1,n2)]1/r(n1,n2)∆uA(n1,n2)
∆uB(n1,n2)

,
if r ∈ (r̂( [α(n1,n2)]1/r(n1,n2)∆uA(n1,n2)

∆uB(n1,n2)
), 2] and

∆uB(n1, n2) ≥ [α(n1, n2)]1/r(n1,n2) ∆uA(n1, n2);

1− 1
2

∆uB(n1,n2)

[α(n1,n2)]1/r(n1,n2)∆uA(n1,n2)
,

if r ∈ (2,+∞) and

[α(n1, n2)]1/r(n1,n2) ∆uA(n1, n2) ≥ ∆uB(n1, n2);

1
2

[α(n1,n2)]1/r(n1,n2)∆uA(n1,n2)
∆uB(n1,n2)

,
if r ∈ (2,+∞) and

∆uB(n1, n2) ≥ [α(n1, n2)]1/r(n1,n2) ∆uA(n1, n2).

1− 1
2

∆uB(n1,n2)
α(n1,n2)∆uA(n1,n2)

,
if r = +∞ and

α(n1, n2)∆uA(n1, n2) ≥ ∆uB(n1, n2);

1
2
α(n1,n2)∆uA(n1,n2)

∆uB(n1,n2)
,

if r = +∞ and

∆uB(n1, n2) ≥ α(n1, n2)∆uA(n1, n2).

(5) implies that ∆ui(n1, n2) = ∆u(n1, n2)vi for i ∈ {A,B}. The lemma thus follows.
Lemma 4 shows that how the equilibrium winning likelihoods (pA(n1, n2), pB(n1, n2))

depend on the state-specific characteristics, α(n1, n2) and r(n1, n2), where pB(n1, n2) = 1−
pA(n1, n2), given the ratio of vA/vB. As a result, the outcome-dependent heterogeneity would

directly lead to the failure of the history independence result in team contests.26

By (3) and (5), we rewrite the recursive formula in Lemma 2 as

∆u(n1, n2) = pA(n1 + 1, n2)∆u(n1 + 1, n2) + pB(n1, n2 + 1)∆u(n1, n2 + 1), (6)

where pA(n1 + 1, n2) and pB(n1, n2 + 1) = 1− pA(n1, n2 + 1) are given by Lemma 4. We will

rely on the formula (6) to derive the expected total effort in the following analysis.

26Fu, Lu, and Pan (2015) eastablish the history independence result in an unbiased team contest. Note that
the result of history independence holds for a biased team contest with homogeneous battles, but collapses
in the presence of outcome-dependent heterogeneity.
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4.1 Homogeneous Case

If α and r are the same across the state (n1, n2), p := pA(n1, n2) must remain the same

across the state using Lemma 4, and therefore the expected total effort can be simplified as

TEHomo,k(α, r) =
∑

(n1,n2)∈S/E

Cn1
n1+n2

pn1 (1− p)n2 E(n1, n2), (7)

where E(n1, n2) is the expected effort from the paired players in a battle at state (n1, n2).

Proposition 1. The total effort function in (7) equals

TEHomo,k(α, r) = (2k + 1)Ck
2kp

k (1− p)k β(vA, vB, α, r), (8)

where the total number of battles is 2k+1 and β(vA, vB, α, r) is given by Property 1.

Proof. By (5) and Property 1, we first rewrite TEHomo,k(α, r) in (7) as

TEHomo =
∑

(n1,n2)∈S/E

Cn1
n1+n2

pn1 (1− p)n2 E(n1, n2)

=
∑

(n1,n2)

Cn1
n1+n2

pn1 (1− p)n2 β(vA, vB, α, r)∆u(n1, n2).

To simplify the calculation, we show two useful results in the following two steps. In

Step 1, we prove ∆u(n1, n2) = γ(n1, n2)pk−n1 (1− p)k−n2 . In Step 2, we show that Ck
2k =∑

n1+n2=tC
n1
n1+n2γ(n1, n2) holds for any t ∈ {1, 2, ..., 2k}. Combining the results, we have

TEHomo =
∑

(n1,n2)

Cn1
n1+n2

pn1 (1− p)n2 β(vA, vB, α, r)∆u(n1, n2)

=
∑

(n1,n2)

Cn1
n1+n2

γ(n1, n2)β(vA, vB, α, r)p
k (1− p)k

=
2k∑
t=1

∑
n1+n2=t

Cn1
n1+n2

γ(n1, n2)β(vA, vB, α, r)p
k (1− p)k

=
2k∑
t=1

Ck
2kβ(vA, vB, α, r)p

k (1− p)k

19



= (2k + 1)Ck
2kp

k (1− p)k β(vA, vB, α, r).

The details are relegated into the appendix.

We now formally describe the problem as follows. With homogeneous battles, given

r ∈ (0,+∞], the optimal bias α solves the following program:

PHomo := max
α∈[0,+∞)

TEHomo,k(α, r). (9)

Theorem 1. With homogeneous battles, the optimal bias that maximizes the expected aggre-
gate effort TEHomo,k(α, r) in (7) is α∗ = α∗One-shot(r).

Proof. The optimal bias α∗ solves the program in (9). Recall in Proposition 1,TEHomo,k(α, r) =

(2k+1)Ck
2kp

k (1− p)k β. It then suffi ces to maximize pk (1− p)k β(vA, vB, α, r) by choosing a

α ∈ [0,+∞). On one hand, α∗One-shot(r) maximizes β(vA, vB, α, r) for any given r ∈ (0,+∞].

This is because β is maximized when ∆uB = α1/r∆uA, i.e., α = (vB/vA)r for r ∈ (0,+∞)

and when ∆uB = α∆uA, i.e., α = vB/vA for r = +∞. On the other hand, pk (1− p)k or
p (1− p) is maximized when p = 1/2, which holds true when α = α∗One-shot(r). Therefore,

α∗One-shot(r) is the optimal bias.

Compare to Lemma 1, we conclude that there is no loss to search for the effort-maximizing

bias of a single battle when all battles are homogeneous. Nevertheless, the intuition can be

different: From the proof of Theorem 1, the bias α∗One-shot maximizes not only the effort in

each battle, but also Ck
2kp

k (1− p)k, the probability of reaching the state (k, k), at which

competition is the fiercest. Recall that the contest quits whenever a team accumulates k+ 1

wins. Certeris paribus, the more battles are played, the greater effort the designer could

elicit.

4.2 Heterogeneous Case

For the sake of generality, we allow outcome-dependent heterogeneity in this subsection,

which means that r can vary with the state (n1, n2) and/or α is allowed to be contingent on

(n1, n2). Due to the failure of history independence result, we have to trace the history of

battle outcomes in this case, as players’efforts depend on the path of history. For that, we

define path g as a sequence of the ordered nodes, i.e., g = {(n1
1, n

1
2), ..., (nt1, n

t
2), ..., (nT1 , n

T
2 )},
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where (nt1, n
t
2) ∈ S, ∀t ∈ {1, ..., T}. Recall that S defined in (2) is an collection containing all

possible states. On this basis, we introduce the definition of a feasible path in the following.

Definition 2. (Feasible Path) A path g = {(n1
1, n

1
2), ..., (nt1, n

t
2), (nt+1

1 , nt+1
2 ), ..., (nT1 , n

T
2 )} is

feasible if (nt+1
1 , nt+1

2 ) equals either (nt1+1, nt2) or (nt1, n
t
2+1), ∀t ∈ {1, ..., T}, where T ≤ k+1.

Denote G((s1, s2), (e1, e2)) as a collection of all feasible paths starting from (s1, s2) to (e1, e2).

The feasiblity constraints basically require an uninterrupted description of the battle

history: each state (nt1, n
t
2) reaches either (nt1 + 1, nt2) or (nt1, n

t
2 + 1) after battle t is played,

since either team A or team B wins the battle. Note that (n1
1, n

1
2) is not necessarily (0, 0)

and (nT1 , n
T
2 ) is not necessarily an ending state of the whole contest. For example, {(1, 0),

(1, 1), (1, 2)} describes a feasible path in a 3-battle contest (i.e., k = 1), {(2, 0), (2, 1), (2, 2)}
describes a feasible path in a 5-battle contest (i.e., k = 2), and G((0, 0), (1, 1)) = {g1, g2},
where g1 = {(0, 0), (1, 0), (1, 1)} and g2 = {(0, 0), (0, 1), (1, 1)}.
For an easier exposition, we further define the probability and the adjusted probability

of a feasible path in the following, which will play a crucial role in our following analysis.

Definition 3. (Probability of A Path) (i) Given a feasible path g = {(n1
1, n

1
2),...,(nt1, n

t
2),...,(nT1 , n

T
2 )},

denote P (g) := ΠT−1
t=1 p((n

t
1, n

t
2), (nt+1

1 , nt+1
2 )) as the probability of path g, where

p((nt1, n
t
2), (nt+1

1 , nt+1
2 )) =

{
pA(nt1, n

t
2), if (nt+1

1 , nt+1
2 ) = (nt1 + 1, nt2);

pB(nt1, n
t
2), if (nt+1

1 , nt+1
2 ) = (nt1, n

t
2 + 1).

Denote P̂ (g) := ΠT−1
t=1 p̂((n

t
1, n

t
2), (nt+1

1 , nt+1
2 )) as the adjusted probability of path g, where

p̂((nt1, n
t
2), (nt+1

1 , nt+1
2 )) =

{
pA(nt1 + 1, nt2), if (nt+1

1 , nt+1
2 ) = (nt1 + 1, nt2);

pB(nt1, n
t
2 + 1), if (nt+1

1 , nt+1
2 ) = (nt1, n

t
2 + 1).

(ii) For any reachable state (nt1, n
t
2), P ((nt1, n

t
2), (nt1, n

t
2)) := 1 and P̂ ((nt1, n

t
2), (nt1, n

t
2)) :=

1.

(iii) For any infeasible path g, P (g) := 0 and P̂ (g) := 0.

Consider the following examples. By Definition 3(i), given g1 = {(0, 0), (1, 0), (1, 1)}, the
probability of path g1 is P (g1) = pA(0, 0)pB(1, 0) and the adjusted probability of path g1 is

P̂ (g1) = p̂((0, 0), (1, 0))p̂((1, 0), (1, 1)) = pA(1, 0)pB(1, 1). Given g2 = {(0, 0), (0, 1), (1, 1)},
the probability of path g2 is P (g2) = pB(0, 0)pA(0, 1) and the adjusted probability of path

g2 is P̂ (g2) = p̂((0, 0), (0, 1))p̂((0, 1), (1, 1)) = pB(0, 1)pA(1, 1).

By Definition 3(ii), P ((0, 0), (0, 0)) = 1 and P̂ ((k, k), (k, k)) = 1. By Definition 3(iii),

P ((1, 0), (0, 1)) = 0 and P̂ ((1, 0), (0, 1)) = 0, since the path {(1, 0), (0, 1)} is infeasible.
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Based on the definitions, we will propose a general program whose solutions give the

optimal vector of biases in the next subsection.

4.2.1 General Program

Equipped with the notations in Definitions 2 and 3, we first characterize the expected

aggregate effort in the following proposition.

Proposition 2. The expected aggregate effort equals

TEHete,k =
∑

(n1,n2)∈S/E

 ∑
g∈G((0,0),(n1,n2))

P (g)

 ∑
g∈G((n1,n2),(k,k))

P̂ (g)

 β(n1, n2), (10)

where P (g) and P̂ (g) are defined in Defnition 3.

Proof. We first reformulate the expected aggregate effort as

TEHete,k =
∑

(n1,n2)∈S/E

P (n1, n2)E(n1, n2),

where S/E is the collection of all possible states excluding the ending ones, P (n1, n2) is the

probability that the contest reaches state (n1, n2), and E(n1, n2) is the expected sum of efforts

from the two matched players in a battle t at state (n1, n2). In particular, it follows from di-

rect calculation that P (n1, n2) =
∑

g∈G((0,0),(n1,n2)) P (g) and E(n1, n2) = β(n1, n2)∆u(n1, n2)

using Property 1. To establish Proposition 2, it only remains to show that

∆u(n1, n2) =
∑

g∈G((n1,n2),(k,k))

P̂ (g). (11)

We relegate the full proof into the appendix.

Proposition 2 reveals how the choice of biases {α(n1, n2)}(n1,n2)∈S/E affects TEHete,k. To

be more specific, the biases impact the expected aggregate effort through two channels: by

influencing the likelihood of reaching a state and by affecting players’incentive for exerting

efforts at that state, i.e., P (n1, n2) and ∆u(n1, n2). In the proof of Proposition 2, we show

that ∆u(n1, n2) =
∑

g∈G((n1,n2),(k,k)) P̂ (g), which implies that the players’incentives for ex-

erting effort in the current battle depends on the winning probabilities at attainable states
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in subsequent battles.

When α and r do not depend on the state (n1, n2), both the winning probability p :=

pA(n1, n2) and β := β(n1, n2) are invariant across the states. In this case, we show that the

aggregate effort function in (10) boils down to (7) for homogeneous battles. The result is

summarized in the following corollary.

Corollary 1. When α and r do not depend on the state (n1, n2), the expected aggregate

effort function in (10) coincides with that in (7).

Proof. See the appendix.

The Corollary above shows that when both α and r are invariant of the state (n1, n2),

our general program coincides to the one for homogeneous battle in Corollary 1. When α

and/or r can vary with the state (n1, n2), we introduce the following program to search the

optimal biases.

With Proposition 2, we formally formulate the program for team contests with outcome-

dependent heterogeneity as follows. Given r = {r(n1, n2)}(n1,n2)∈S/E with r(n1, n2) ∈ (0,+∞],

the optimal biased rule α = {α(n1, n2)}(n1,n2)∈S/E solves the following program:

PHete : = max
α
TEHete,k(α, r)

s.t. α(n1, n2) ∈ [0,+∞), where (n1, n2) ∈ S/E. (12)

We next show the existence of the optimal biases that solve the program described in

(12) as follows.

Proposition 3. There always exists a optimal biased rule α∗ = {α∗(n1, n2): (n1, n2) ∈ S/E}
that solves the program PHete in (12).

Proof. Since pA(n1, n2) in Lemma 4 and β (vA, vB, α(n1, n2), r(n1, n2)) are both continu-

ous in α(n1, n2), TEHete,k(α, r) in (10) is continuous in α for any fix r. In addition,

limα→+∞TEHete,k(α, r) = 0, as |TEHete,k(α, r)| ≤
∑

(n1,n2)∈S/E β(vA, vB, α(n1, n2), r(n1, n2))

and limα(n1,n2)→+∞ β(vA, vB, α(n1, n2), r(n1, n2)) = 0. This implies that there must exist a

M > 0 such that TEHete,k(α, r) < TEHete,k(M, r). By Weierstrass Extreme Value Theo-

rem, there must exist an optimal α ∈ [0,M ]|S/E| that maximizes the total expected effort in

(10).
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So far we have introduced the general program (12) whose solutions yield the optimal

biases and establish the existence of the optimum in Proposition 3. However, we are encoun-

tering challenges in characterizing the optimal biased rule for two primary reasons. First,

the general program outlined in (12) we are using to solve the optimal biases is multidimen-

sional and computationally complex. Second, it remains unclear whether we can identify

a valuable property that will help in comprehending how outcome-dependent heterogeneity

impacts the design of biased rules. Even for k = 2, it is not straightforward to solve for the

optimal biases, since the formula of TEHete,k=2(α, r) is suffi ciently complicated (See Exam-

ple 2). To tackle the problems, we will simplify the general program and explore the general

properties of the optimal biases in the next subsection.

4.2.2 Simplification and Properties of Optimal Biases

In this subsection, we will decompose the multi-dimensional program in (12) into a system

of single-dimensional optimization subproblems in Proposition 4. This simplification offers

a way to search for the optimal biases. Moreover, we establish the two general properties of

the optimums in Corollary 3 and Corollary 4.

To proceed, we will first identify the effect of a particular bias α(n′1, n
′
2) on the expected

aggregate effort, which plays an important role in simplifying our general problem. Recall

that Proposition 2 reveals how biased rule α = {α(n1, n2)}(n1,n2)∈S/E affects the expected

aggregate effort TEHete,k. However, we are still uncertain about how a change in a particular

bias α(n′1, n
′
2) influences the expected aggregate effort. We first note that the bias α(n′1, n

′
2)

affects TEHete,k in (10) through pA(n′1, n
′
2) and β(n′1, n

′
2).27 The effect on β(n′1, n

′
2) is mea-

sured by the coeffi cient ω(α/α(n′1, n
′
2)) :=

(∑
g∈G((0,0),(n′1,n

′
2)) P (g)

)(∑
g∈G((n′1,n

′
2),(k,k)) P̂ (g)

)
,

where α/α(n′1, n
′
2) denotes the vector {α(n1, n2)}(n1,n2)∈S/(E∪(n′1,n

′
2)). It then remains to ana-

lyze how pA(n′1, n
′
2) enters in TEHete,k, which is solved by the following proposition.

Lemma 5. The coeffi cient of pA(n′1, n
′
2) in TEHete,k in (10) is ϕ(α/α(n′1, n

′
2)) = I + II,

where

I=
∑

t∈{t′+1,...,2k}

∑
n1+n2=t

(n1,n2)∈S/E


(∑

g∈G((0,0),(n′1,n
′
2)) P (g)

)( ∑
g∈G((n′1+1,n′2),(n1,n2)) P (g)

−
∑

g∈G((n′1,n
′
2+1),(n1,n2)) P (g)

)
·∆u(n1, n2)β(n1, n2)

 ,
27Note that the prize spread ∆u(n1, n2) =

∑
g∈G((n1,n2),(k,k)) P̂ (g) does not depend on the bias α(n′1, n

′
2).
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and

II =
∑

t∈{0,...,t′−1}

∑
n1+n2=t

(n1,n2)∈S/E


(∑

g∈G((0,0),(n1,n2)) P (g)
)( ∑

g∈G((n1,n2),(n′1−1,n′2)) P̂ (g)

−
∑

g∈G((n1,n2),(n′1,n
′
2−1)) P̂ (g)

)
·∆u(n′1, n

′
2)β(n1, n2)

 .
Recall that ∆u(n1, n2) =

∑
g∈G((n1,n2),(k,k)) P̂ (g) is defined in (11).

Proof. The total effort function in (10) can be rewritten as

TEHete,k =
∑

(n1,n2)∈S/E

 ∑
g∈G((0,0),(n1,n2))

P (g)

 ∑
g∈G((n1,n2),(k,k))

P̂ (g)

 β(n1, n2).

Depending on the state (n1, n2), pA(n′1, n
′
2) may affect the probability of the paths and

players’incentive along the paths, i.e.,
∑

g∈G((0,0),(n1,n2)) P (g) and
∑

g∈G((n1,n2),(k,k)) P̂ (g). Re-

call that, by Definition 3, p((n′1, n
′
2), (n′1 + 1, n′2)) = pA(n′1, n

′
2), p((n′1, n

′
2), (n′1, n

′
2 + 1)) =

pB(n′1, n
′
2), p̂((n′1 − 1, n′2), (n′1, n

′
2)) = pA(n′1, n

′
2), and p̂((n′1, n

′
2 − 1), (n′1, n

′
2)) = pB(n′1, n

′
2).

We show that
∑

g∈G((0,0),(n1,n2)) P (g) is a linear function of pA(n′1, n
′
2) for any (n1, n2) and

the coeffi cient of pA(n′1, n
′
2) in

∑
g∈G((0,0),(n1,n2)) P (g) equals ∑

g∈G((0,0),(n′1,n
′
2))

P (g)

 ∑
g∈G((n′1+1,n′2),(n1,n2))

P (g)−
∑

g∈G((n′1,n
′
2+1),(n1,n2))

P (g)

 .

Moreover, pA(n′1, n
′
2) would only affect the probability of a path after battle t′ = n′1+n′2+1,

the effect of pA(n′1, n
′
2) on the expected aggregate effort through affecting the probability of

paths can be summarized by

I =
∑

t∈{t′+1,...,2k}

∑
n1+n2=t

(n1,n2)∈S/E

 ∑
g∈G((0,0),(n′1,n

′
2))

P (g)

( ∑
g∈G((n′1+1,n′2),(n1,n2)) P (g)

−
∑

g∈G((n′1,n
′
2+1),(n1,n2)) P (g)

)

·∆u(n1, n2)β(n1, n2),

using ∆u(n1, n2) =
∑

g∈G((n1,n2),(k,k)) P̂ (g).

Analogously, we show that
∑

g∈G((n1,n2),(k,k)) P̂ (g) is a linear function of pA(n′1, n
′
2) for any
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(n1, n2) and the coeffi cient of pA(n′1, n
′
2) in

∑
g∈G((n1,n2),(k,k)) P̂ (g) equals− ∑

g∈G((n1,n2),(n′1,n
′
2−1))

P̂ (g) +
∑

g∈G((n1,n2),(n′1−1,n′2))

P̂ (g)

 ∑
g∈G((n′1,n

′
2),(k,k))

P̂ (g)

 .

Moreover, pA(n′1, n
′
2) would only affect the incentives, i.e., P̂ (g) before battle t′ − 1 =

n′1+n′2, the effect of pA(n′1, n
′
2) on the expected aggregate effort through affecting the players’

incentive along the paths can be summarized by

II =
∑

t∈{0,...,t′−1}

∑
n1+n2=t

(n1,n2)∈S/E

 ∑
g∈G((0,0),(n1,n2))

P (g)



·
( ∑

g∈G((n1,n2),(n′1−1,n′2)) P̂ (g)

−
∑

g∈G((n1,n2),(n′1,n
′
2−1)) P̂ (g)

)
∆u(n′1, n

′
2)β(n1, n2).

Combining the results above, we conclude that the coeffi cient of pA(n′1, n
′
2) in TEHete,k

is I + II. More details are relegated into the appendix.

By Lemma 5, we qualify the effect of pA(n1, n2) on the expected aggregate effort TEHete,k,

which is captured by ϕ(α/α(n1, n2)). Certeris paribus, if pA(n1, n2) changes into pA(n1, n2)+

∆, the aggregate effort increases fromTEHete,k toTEHete,k+ϕ(α/α(n1, n2))∆. Furthermore,

the effect ϕ(α/α(n1, n2)) can be decomposed into I and II. In particular, I measures the

effect of a change in pA(n1, n2) on the probability of a path and II measures the effect on

the players’incentives, since ∆u(n1, n2) =
∑

g∈G((n1,n2),(k,k)) P̂ (g) depends on the probability

of the paths involved.

More specifically, Lemma 5 implies that a change in pA(n1, n2) affects the aggregate effort

in (10) through two channels. First, a change in pA(n1, n2) has an impact on the probability

of reaching a state in subsequent battles. Consider a 3-battle contest, as pA(1, 0) increases,

the contest is more likely to reach the state (2, 0), rather than (1, 1). Note that players

would spend more efforts on (1, 1) than on (2, 0). Second, a change in pA(n1, n2) presumably

influences players’incentives for exerting effort at a state before battle t = n1 + n2 + 1. For

example, in a 3-battle contest, a high pA(1, 1) would lower players’ incentive for exerting

effort at state (1, 0). This is because even player B(2) wins battle 2, team B is less likely

to win battle 3 with a higher pA(1, 1), which in turn lowers player B(2)’s incentive and
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therefore that of player A(2) for exerting effort. This intuition can be further confirmed by

∆u(1, 0) = pB(1, 1).

Lemma 5 yields an important implication that TEHete,k in (10) can be decomposed

into ϕ(α/α(n1, n2))pA(n1, n2)+ω(α/α(n1, n2))β(n1, n2) and other terms that do not involve

α(n1, n2). In other words, α(n1, n2) influences the aggregate effort by affecting pA(n1, n2)

and β(n1, n2). More detailly, as α(n1, n2) increases by ∆, the change in the aggregate effort

equals [ϕ(α/α(n1, n2))∂pA(n1, n2)/∂α(n1, n2) + ω(α/α(n1, n2))∂β(n1, n2)/∂α(n1, n2)] ∆ ap-

proximately, where pA(n1, n2) is given by lemma 4 and β(n1, n2) = β (vA, vB, α(n1, n2), r(n1, n2)).

By applying the aforementioned decomposition, we simplify the multi-dimensional program

described in (12) into a system of single-dimensional optimization subproblems in the fol-

lowing proposition.

Proposition 4. The |S/E|-dimensional problem in (12) can be converted into a system of

|S/E| single-dimensional optimization subproblems, where each subprogram is given by

max
α(n1,n2)∈[0,+∞)

ϕ(α/α(n1, n2))pA(n1, n2) + ω(α/α(n1, n2))β(n1, n2). (13)

where pA(n1, n2) is given by lemma 4, ϕ(α/α(n1, n2)) is given by Lemma 5 and ω(α/α(n1, n2)) :=(∑
g∈G((0,0),(n1,n2)) P (g)

)(∑
g∈G((n1,n2),(k,k)) P̂ (g)

)
.

Proof. By Lemma 5, TEHete,k in (10) can be decomposed into ϕ(α/α(n1, n2))pA(n1, n2) +

ω(α/α(n1, n2))β(n1, n2) and other terms that do not involve α(n1, n2). In particular, neither

ϕ(α/α(n1, n2)) nor ω(α/α(n1, n2)) depends on α(n1, n2), where ϕ(α/α(n1, n2)) = I+II and

ω(α/α(n1, n2)) :=
(∑

g∈G((0,0),(n1,n2)) P (g)
)(∑

g∈G((n1,n2),(k,k)) P̂ (g)
)
. Therefore, it suffi ces

to considermaxα(n1,n2)∈[0,+∞) ϕ(α/α(n1, n2))pA(n1, n2)+ω(α/α(n1, n2))β(n1, n2),∀(n1, n2) ∈
S/E.

It is worth noting that the solution to the general problem (12) must solve the system of

these subproblems described in (13).28 We can therefore rely on Proposition 4 to search for

and to learn more about the optimal biases in such a team contest with outcome-dependent

heterogeneity. If β(n1, n2) := β (vA, vB, α(n1, n2), r(n1, n2)) is differentiable, we can further

apply first-order conditions to simplify the single-dimensional optimization subproblems into

a system of equations in the following.

28If the solution to the system of these subproblems in (13) is unique, it must be the optimal biased rule
that solves (12).
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Corollary 2. When r(n1, n2) ≤ 1, the optimal biased rule must satisfy the system of |S/E|
equations:

ϕ(α/α(n1, n2))
vrAv

r
B

(vrB + α(n1, n2)vrA)2 + ω(α/α(n1, n2))
dβ (n1, n2)

dα(n1, n2)
= 0, where (n1, n2) ∈ S/E,

where β(n1, n2) := β (vA, vB, α(n1, n2), r(n1, n2)) is differentiable with respect to α(n1, n2),

when r(n1, n2) ≤ 1.

Corollary 2 provides a practical way to search for the optimal biases. Equipped with

Proposition 4 and Proposition 3, we establish two general properties in Corollary 3 and

Corollary 4, which shed light on the optimal design of the biases.

Corollary 3. When r takes different values over (n1, n2), i.e., r(n1, n2) 6= r(n′1, n
′
2) whenever

(n1, n2) 6= (n′1, n
′
2), the biased rule α∗Homo = {α(n1, n2)|α(n1, n2) = α∗One-shot(r(n1, n2))}

would never be the optimal.

Proof. We plugα∗Homo into ϕ(α/α(n1, n2)) given by Lemma 5, we have ϕ(α∗Homo/α(n1, n2)) =

I + II, where

I =

(
1

2

)n1+n2
[

∆u(n1 + 1, n2)β(n1 + 1, n2)1{(n1 + 1, n2) ∈ S/E}
−∆u(n1, n2 + 1)β(n1, n2 + 1)1{(n1, n2 + 1) ∈ S/E}

]

=

(
1

2

)2k−1

[β(n1 + 1, n2)1{(n1 + 1, n2) ∈ S/E} − β(n1, n2 + 1)1{(n1, n2 + 1) ∈ S/E}] ,

and

II =

(
1

2

)n1+n2
[

∆u(n1 − 1, n2)β(n1 − 1, n2)1{(n1 − 1, n2) ∈ S/E}
−∆u(n1, n2 − 1)β(n1, n2 − 1)1{(n1, n2 − 1) ∈ S/E}

]

=

(
1

2

)2k+1

[β(n1 − 1, n2)1{(n1 − 1, n2) ∈ S/E} − β(n1, n2 − 1)1{(n1, n2 − 1) ∈ S/E}] ,

where 1{·} is an indicator function. As a result,

ϕ(α∗Homo/α(n1, n2))

=

(
1

2

)2k−1

[β(n1 + 1, n2)1{(n1 + 1, n2) ∈ S/E} − β(n1, n2 + 1)1{(n1, n2 + 1) ∈ S/E}]
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+

(
1

2

)2k+1

[β(n1 − 1, n2)1{(n1 − 1, n2) ∈ S/E} − β(n1, n2 − 1)1{(n1, n2 − 1) ∈ S/E}] .

Consider (n1, n2) = (0, 0), ϕ(α∗Homo/α(0, 0)) =
(

1
2

)2k−1
[β(1, 0)− β(0, 1)]. As r takes differ-

ent values over (n1, n2), r(1, 0) 6= r(0, 1) in particular, which implies that β(1, 0) 6= β(0, 1)

under the biased rule α∗Homo and therefore ϕ(α∗Homo/α(0, 0)) 6= 0. This further implies that

α(0, 0) = (vB/vA)r(0,0) does not maximize ϕ(α∗Homo/α(0, 0))pA(0, 0)+ω(α∗Homo/α(0, 0))β(0, 0).

By Proposition 4, the biased ruleα∗Homo does not maximize the expected aggregate effort.

In contrast to Corollary 3, when battles are homogeneous, the biased rule α∗Homo =

{α(n1, n2)|α(n1, n2) = α∗One-shot(r(n1, n2))} uniquely maximizes the expected aggregate effort
as shown in Theorem 1.

Corollary 4. Given the biases at states excluding (n1, n2), i.e., α/α(n1, n2) := {α(n′1, n
′
2):

(n′1, n
′
2) ∈ S/(E ∪ (n1, n2))},

(i) if P ((0, 0), (n1, n2)|α/α(n1, n2)) > 0 and ϕ(α/α(n1, n2)) > (<)0, the optimal α∗(n1, n2) >

(<)α∗One-shot(r(n1, n2);

(ii) if P ((0, 0), (n1, n2)|α/α(n1, n2)) = 0, the choice of α(n1, n2) does not affect the re-

sulting expected aggregate effort.

Proof. Given α/α(n1, n2) such that ϕ(α/α(n1, n2)) > 0, to maximize TEHete,k, the op-

timal α∗(n1, n2) must maximize ϕ(α/α(n1, n2))pA(n1, n2) + ω(α/α(n1, n2))β(n1, n2). For

r ∈ (0,+∞), one can easily verify that β(n1, n2) increases with α(n1, n2) from 0 until

(vB/vA)r(n1,n2). As a result, for any α(n1, n2) ≤ (vB/vA)r(n1,n2), an increase in α(n1, n2) leads

to an increase in ϕ(α/α(n1, n2))pA(n1, n2) + ω(α/α(n1, n2))β(n1, n2), since ϕ(α/α(n1, n2)),

ω(α/α(n1, n2)) > 0 and pA(n1, n2) always increases in α(n1, n2). Therefore, α∗(n1, n2) /∈
[0, (vB/vA)r(n1,n2)], which implies that α∗(n1, n2) > (vB/vA)r(n1,n2). If ϕ(α/α(n1, n2)) < 0,

the optimal α∗(n1, n2) < (vB/vA)r(n1,n2), since β(n1, n2) decreases with α(n1, n2) when

α(n1, n2) > (vB/vA)r(n1,n2). Analogously, β(n1, n2) increases with α(n1, n2) from 0 until

vB/vA and decreases with α(n1, n2) when α(n1, n2) > vB/vA. The corollary thus follows.

The condition P ((0, 0), (n1, n2)|α/α(n1, n2)) > 0 means that the state (n1, n2) is attain-

able under the biases α/α(n1, n2). When biases can further depend on (n1, n2), Corollary 4

provides conditions under which the optimal bias α∗(n1, n2) favors team A at state (n1, n2).

The conditions simply say that if the overall effect of the bias on the total effort is positive
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(resp. negative), the bias should also be set in the favor of team A (resp. team B) at the

optimum.

4.2.3 Examples

We provide five examples in this subsection. The first two examples are used to illustrate

the idea of decomposition in the last subsection. Examples 3 and 4 show some numerical

results for homogeneous and heterogeneous cases, respectively. In Example 5, we compare

the optimal biases of 3-battle team contests to those of 3-battle individual contests studied

by Barbieri and Serena (2022).

Example 1 (Continue)

Consider a best-of-three team contest with outcome-dependent heterogeneity. There are

two methods to compute the coeffi cient of pA(n′1, n
′
2) in TEHete,k=1, i.e., ϕ(α/α(n′1, n

′
2)). The

first way is to apply Lemma 5 and the second one is to decompose TEHete,k=1 in Example

1 directly. The two yield the same result. The details are relegated into subsection 5.12 in

the appendix. We present the results as follows.

ϕ(α/α(0, 0)) = pB(1, 1)β(1, 0)− pA(1, 1)β(0, 1) + (pB(1, 0)− pA(0, 1)) β(1, 1).

ϕ(α/α(1, 0)) = pB(1, 1)β (0, 0)− pA(0, 0)β (1, 1) ;

ϕ(α/α(0, 1)) = −pA(1, 1)β (0, 0) + pB(0, 0)β (1, 1) ;

ϕ(α/α(1, 1)) = [−pA(1, 0) + pB(0, 1)] β (0, 0)− pA(0, 0)β (1, 0) + pB(0, 0)β (0, 1) .

In addition, using ω(α/α(n1, n2)) :=
(∑

g∈G((0,0),(n1,n2)) P (g)
)(∑

g∈G((n1,n2),(k,k)) P̂ (g)
)
,

we have

ω(α/α(0, 0)) =
∑

g∈G((0,0),(1,1))

P̂ (g) = pA(1, 0)pB(1, 1) + pB(0, 1)pA(1, 1);

ω(α/α(1, 0)) = pA(0, 0)pB(1, 1);

ω(α/α(0, 1)) = pB(0, 0)pA(1, 1);

ω(α/α(1, 1)) =
∑

g∈G((0,0),(1,1))

P (g) = pA(0, 0)pB(1, 0) + pB(0, 0)pA(0, 1).
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From Corollary 2, when r(n1, n2) ≤ 1, the optimal biases can be obtained by solved from

the following system:[
pB(1, 1)β(1, 0)− pA(1, 1)β(0, 1)

+ (pB(1, 0)− pA(0, 1)) β(1, 1)

]
dpA(0, 0)

dα(0, 0)
+

[
pA(1, 0)pB(1, 1)

+pB(0, 1)pA(1, 1)

]
dβ (0, 0)

dα(0, 0)
= 0;

[pB(1, 1)β (0, 0)− pA(0, 0)β (1, 1)]
dpA(1, 0)

dα(1, 0)
+ pA(0, 0)pB(1, 1)

dβ (1, 0)

dα(1, 0)
= 0;

[−pA(1, 1)β (0, 0) + pB(0, 0)β (1, 1)]
dpA(0, 1)

dα(0, 1)
+ pB(0, 0)pA(1, 1)

dβ (0, 1)

dα(0, 1)
= 0;

[
(−pA(1, 0) + pB(0, 1)) β (0, 0)

−pA(0, 0)β (1, 0) + pB(0, 0)β (0, 1)

]
dpA(1, 1)

dα(1, 1)
+

[
pA(0, 0)pB(1, 0)

+pB(0, 0)pA(0, 1)

]
dβ (1, 1)

dα(1, 1)
= 0.

Example 2 (Continue)

In a best-of-five team contest with outcome-dependent heterogeneity, consider state (1, 2)

for example. We apply the aforementioned two approaches to derive ϕ(α/α(1, 2)) and

ω(α/α(1, 2)). By direct comparison, the two approaches generate the same result. We

present the results as follows. Details are relegated into subsection 5.13 in the appendix.

ϕ(α/α(1, 2)) = (pB(0, 1)pB(0, 2)− pA(1, 0)pB(1, 1)− pB(0, 1)pA(1, 1)) pA(2, 2)β(0, 0)

−P (1, 0)pB(1, 1)pA(2, 2)β(1, 0)

+P (0, 1) (pB(0, 2)− pA(1, 1)) pA(2, 2)β(0, 1)

+P (0, 2)pA(2, 2)β(0, 2)− P (1, 1)pA(2, 2)β(1, 1)

+P (1, 2)β(2, 2),

and

ω(α/α(1, 2)) := P (1, 2)pA(2, 2).

Moreover,

TEHete,k=2(α, r) = ϕ(α/α(1, 2))pA(1, 2) + ω(α/α(1, 2))β(1, 2) + T (α/α(1, 2)),

where T (α/α(1, 2)) denotes terms that do not involve α(1, 2).
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Example 3 (Three-battle contest with homogeneous battles)

Consider a best-of-three team contest with homogeneous battles. For homogeneous bat-

tles, we mean that r and α remain the same across the states while two teams’values of the

prize (vA and vB) can be different. Suppose that team A’s value of the prize is vA and team

B’s value vB = 1. Let r and vA = 0.5; 1; 1.5; 2; +∞ (all-pay contest), respectively. By The-

orem 1, α∗ = (vB/vA)r for r ∈ (0,+∞) and α∗ = vB/vA for r = +∞ are the corresponding

optimal biased rule. The results are summarized in the following table.

r vA = 0.5 vA = 1 vA = 1.5 vA = 2
0.5 1.414 1 0.817 0.707
1 2 1 0.667 0.5
1.5 2.828 1 0.544 0.354
2 4 1 0.444 0.25

+∞ 2 1 0.667 0.5

Table 1: Optimal Bias for Homogeneous Battles

Example 4 (Three-battle contest with outcome-dependent heterogeneity)

In this example, we will introduce outcome-dependent heterogeneity into a best-of-three

contest to see how the optimal biases react. In addition, we will use the example to verify

our general property in Corollary 4. To do so, we fix r(0, 0) = 1, r(0, 1) = 1, r(1, 1) = 1,

and vary r(1, 0) to see how the optimal biased rule α∗ = {α∗(0, 0), α∗(1, 0), α∗(0, 1), α∗(1, 1)}
responses to different value of r(1, 0). We rely on the general problem (12), or equivalently

Proposition 4 to compute the optimal biases numerically. The results are summarized in the

following table.

r(1,0) α∗(0, 0) α∗(1, 0) α∗(0, 1) α∗(1, 1) TE
0.5 0.667 1 1 1.5 0.7
1 1 1 1 1 0.75
1.5 2 1 1 0.5 0.833

any value∈ [2,+∞] +∞ 1 any value 0 1

Table 2: Optimal Biases For Heterogeneous Case

For r(1, 0) ∈ [2,+∞], α∗(0, 0) = +∞ means that team A wins battle 1 automatically. As

a consequence, in battle 2, the state must be (1, 0), at which players compete for a prize of

value 1 in a Tullock contest with r(1, 0) ∈ [2,+∞]. This is because at (1, 0), if player A(2)

32



wins battle 2, team A wins the contest; otherwise, team B wins the contest, as α∗(1, 1) = 0.

The reason why α∗(0, 1) can be any value is that state (0, 1) is never attainable.

To verify the property in Corollary 4, we compute the winning chances under the optimal

biased rule as below.

r(1, 0) pA(0, 0) pA(1, 0) pA(0, 1) pA(1, 1)
0.5 0.4 0.5 0.5 0.6
1 0.5 0.5 0.5 0.5
1.5 0.6667 0.5 0.5 0.3333

any value∈ [2,+∞] 1 0.5 [0,1] 0

and

r(1, 0) β(0, 0) β(1, 0) β(0, 1) β(1, 1)
0.5 0.48 0.25 0.5 0.48
1 0.5 0.5 0.5 0.5
1.5 0.4444 0.6667 0.5 0.4444

[2,+∞] 0 1 β(1, 1, α∗(0, 1), r(1, 0)) 0

Recall that in Example 1 (Continue), we have

ϕ(α/α(0, 0)) = pB(1, 1)β(1, 0)− pA(1, 1)β(0, 1) + (pB(1, 0)− pA(0, 1)) β(1, 1);

ϕ(α/α(1, 0)) = pB(1, 1)β (0, 0)− pA(0, 0)β (1, 1) ;

ϕ(α/α(0, 1)) = −pA(1, 1)β (0, 0) + pB(0, 0)β (1, 1) ;

ϕ(α/α(1, 1)) = [−pA(1, 0) + pB(0, 1)] β (0, 0)− pA(0, 0)β (1, 0) + pB(0, 0)β (0, 1) .

By direct substitution, we could compute ϕ(α∗/α(n1, n2)) for all attainable states, i.e.,

(0, 0), (1, 0), (0, 1), (1, 1) in this example. The results are summarized in the following table.

Corollary 4(i) says that for the attainable states, if ϕ(α∗/α(n1, n2)) > (<)0, the optimal

α∗(n1, n2) > (<) (vB/vA)r(n1,n2) and if ϕ(α/α(n1, n2)) = 0, α∗(n1, n2) = (vB/vA)r(n1,n2) for

r(n1, n2) ∈ (0,+∞). In this example, vB/vA = 1 and one could easily verify the property

for r(1, 0) = 0.5; 1; 1.5. When r(1, 0) ∈ [2,+∞), the property remains valid for state

(0, 0), (1, 0), (1, 1). For (0, 1), the condition of Corollary 4(i) is violated, since pA(0, 0) =
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r(1, 0) ϕ(α∗/α(0, 0)) ϕ(α∗/α(1, 0)) ϕ(α∗/α(0, 1)) ϕ(α∗/α(1, 1))
0.5 -0.2 0 0 0.2
1 0 0 0 0
1.5 0.2778 0 0 -0.2778

[2,+∞] 1 0 0 -1

Table 3: ϕ(α∗/α(n1, n2)) in Example 4

1 under the optimal biased rule and the contest would never reach the state (0, 1), i.e.,

P ((0, 0), (0, 1)|α∗) = 0. In this case, it follows from Corollary 4(ii) that α∗(0, 1) ∈ [0,+∞).29

In the following example, we compare our results to Barbieri and Serena (2022) who

study multi-battle individual contests.

Examples 5 (Team contests v.s. individual contests)

Barbieri and Serena (2022) consider a best-of-three Tullock contest between two ex-ante

symmetric players. In particular, they study both victory-dependent biases and victory-

independent biases that maximize the expected total effort. To compare, we let vA = vB

and r remain the same across the states.

(i) Consider biases are victory-dependent. In a three-battle contest between two teams,

our Example 4 shows that {α(0, 0), α(1, 0), α(0, 1), α(1, 1)} = {1, 1, 1, 1} maximizes the
expected total effort when r = 1 across battles and two matched players have equal chance

to win a battle at each node.

In a three-battle contest with two individuals, Proposition 1 of Barbieri and Serena (2022)

shows that {α(0, 0), α(1, 0), α(0, 1), α(1, 1)} = {1, 1/3, 3, 1} is the unique global maximum
for the expected total effort when r = 1 across battles. In particular, players equally likely

to win a battle at each node.

(ii) Consider victory-independent biases. In this case, battles are homogeneous in our

setting. By Theorem 1, the optimal bias is α∗ = 1, as a result, two matched players are

equally likely to win each battle in our team contest setting.

In contrast, Proposition 2 of Barbieri and Serena (2022) shows that the fully unbiased

contest is not an optimal victory-independent contest, i.e., two players do not have equal

chance to win each battle.
29If one applies Corollary 4(i) to conclude that ϕ(α/α(0, 1)) = 0 leads to α∗(0, 1) = 1. Note that

α∗(0, 1) = 1 with α∗(0, 0) = +∞, α∗(1, 0) = 1, and α∗(1, 1) = 0 still constitutes a specifical optimal
biased rule.
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5 Concluding Remarks

We study the effort-maximizing biased design of a dynamic team contest with pairwise

battles in which players from two rival teams form pairwise matches and compete head-to-

head in their own battles. Our model is inherited from Fu, Lu, and Pan (2015) but differs

from their model in two aspects: Two teams can be asymmetric and outcome-dependent

heterogeneity is introduced. With two asymmetric teams, we show that two paired players

always have a common prize spread, regardless of the previous battle outcomes; while, the

result of history independent in Fu, Lu, and Pan (2015) is no longer valid for a biased team

contest with outcome-dependent heterogeneity.

The best-of-N contest studied here is of arbitrary odd length and battles are played

sequentially. The designer can impose a treatment to bias each battle contest. The effort-

maximizing biases are as follows. When battles are homogeneous, the full-balance rule is

effort-maximizing, which echoes the previous finding in static contests: Levelling the playing

field maximizes the competition. However, this full-balance rule is in general suboptimal in

eliciting efforts in the presence of outcome-dependent heterogeneity. Our result domonstrates

that outcome-dependent heterogeneity is crucial in designing the optimal biases, which offers

a new insight for dynamic contest design problems.

In this paper, we attempt to shed light on the optimal biased design of dynamic team

contests. For that, we adopt this multi-battle team contest setting as the first step. A

key feature of this setting is that momentum effect is absent, which allows us to consider

contests of arbitrary odd length, generalized contest technology, and outcome-dependent

heterogeneity. Our design aims to maximize the performance of the competing agents,

specifically the expected total effort. Many works, such as Barbieri and Serena (2019) and

Barbieri and Serena (2022), also consider the goal of maximizing the winner’s effort. However,

aggregating the winner’s effort and identifying the general properties would be complicated

by allowing arbitrary odd battles and outcome-dependent heterogeneity. We leave these to

future work.
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Appendix

This appendix covers the proofs omitted in the main text.

5.1 Proof of Property 1

We consider two cases: (1) r ∈ (0,+∞) and (2) r = +∞, i.e., all-pay auction.
Case 1: For any r ∈ (0,+∞), a biased Tullock contest (∆uA(t),∆uB(t), cA(t) = 1, cB(t) =

1, α) is equivalent to a non-biased one (α1/r∆uA(t),∆uB(t), cA(t) = 1, cB(t) = 1, α = 1). Denote

the resulting equilibrium effort (xA(t), xB(t)) and (x̃A(t), xB(t)), respectively.

To see the equivalency, player A(t) chooses effort xA(t) to maximize

αxrA(t)

αxrA(t) + xrB(t)

∆uA(t) − xA(t)

=
x̃rA(t)

x̃rA(t) + xrB(t)

∆uA(t) −
x̃A(t)

α1/r
,

is equivalent to
x̃rA(t)

x̃rA(t) + xrB(t)

α1/r∆uA(t) − x̃A(t).

We therefore conclude that x̃A(t) = α1/rxA(t). As a result, the total effort in battle t equals

E
[
xA(t) + xB(t)

]
= E

[
x̃A(t)/α

1/r + xB(t)

]
. To derive the equilibrium effort, consider a two-

player one-shot Tullock contest with an arbitrary r(t), the equilibrium strategies are sum-

marized in Lemma 1 in Feng and Lu (2018), by which we solve for the equilibrium effort

(xA(t), xB(t)) for a non-biased Tullock contest, (α1/r∆uA(t),∆uB(t), cA(t) = 1, cB(t) = 1, α = 1).

By applying the equivalency result, we characterize the equilibrium effort (x̃A(t), xB(t)) and

compute the resulting total effort. Let r̂(z) ∈ (1, 2) represent the unique solution to r = 1+zr

with z ∈ (0, 1]. The results are summarized as follows.

Case 1.1: If α1/r∆uA(t) ≥ ∆uB(t),

(i) If r ≤ r̂(
∆uB(t)

α1/r∆uA(t)
),

x̃A(t) =
r
(
α1/r∆uA(t)

)r+1
(∆uB(t))

r

[
(
α1/r∆uA(t)

)r
+ (∆uB(t))r]2

, xB(t) =
r
(
α1/r∆uA(t)

)r
(∆uB(t))

r+1

[
(
α1/r∆uA(t)

)r
+ (∆uB(t))r]2

.
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Therefore,

E
[
xA(t) + xB(t)

]
=

rα
(
∆uA(t)

)r
(∆uB(t))

r
[
∆uA(t) + ∆uB(t)

]
[α
(
∆uA(t)

)r
+ (∆uB(t))r]2

=
rαvrAv

r
B

(αvrA + vrB)2 (vA + vB) ∆u(t).

using ∆uA(t) = vA∆u(t) and ∆uB(t) = vB∆u(t).

(ii) If r ∈ (r̂(
∆uB(t)

α1/r∆uA(t)
), 2],

x̃A(t) = (
1

r − 1
)
1
r (1− 1

r
)∆uB(t);

xB(t) =

{
(1− 1

r
)∆uB(t), with probability q =

∆uB(t)
α1/r∆uA(t)

( 1
r−1

)
1
r ,

0, with probability 1− q.

Therefore,

E
[
xA(t) + xB(t)

]
= E

[
x̃A(t)/α

1/r + xB(t)

]
= (

1

r − 1
)
1
r (1− 1

r
)
∆uB(t)

α1/r
+ (

1

r − 1
)
1
r (1− 1

r
)
∆uB(t)

α1/r
·

∆uB(t)

∆uA(t)

= (
1

r − 1
)
1
r (1− 1

r
)
∆uB(t)

α1/r

(
1 +

∆uB(t)

∆uA(t)

)

= (
1

r − 1
)
1
r (1− 1

r
)
vB
α1/r

(
1 +

vB
vA

)
∆u(t).

(iii) If r > 2,

x̃A(t) = µ∗, xB(t) =

{
µ∗, with probability q =

∆uB(t)
α1/r∆uA(t)

,

0, with probability 1− q.
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Therefore,

E
[
xA(t) + xB(t)

]
= E

[
x̃A(t)/α

1/r + xB(t)

]
=

∆uB(t)

2α1/r
+

∆uB(t)

2

∆uB(t)

α1/r∆uA(t)

=
∆uB(t)

2α1/r

(
1 +

∆uB(t)

∆uA(t)

)

=
1

2α1/r

(
1 +

vB
vA

)
vB∆u(t).

Case 1.2: If ∆uB(t) ≥ α1/r∆uA(t),

(i) If r ≤ r̂(
α1/r∆uA(t)

∆uB(t)
),

x̃A(t) =
r
(
α1/r∆uA(t)

)r+1
(∆uB(t))

r

[
(
α1/r∆uA(t)

)r
+ (∆uB(t))r]2

, xB(t) =
r
(
α1/r∆uA(t)

)r
(∆uB(t))

r+1

[
(
α1/r∆uA(t)

)r
+ (∆uB(t))r]2

.

Therefore,

E
[
xA(t) + xB(t)

]
=

rα
(
∆uA(t)

)r
(∆uB(t))

r
[
∆uA(t) + ∆uB(t)

]
[α
(
∆uA(t)

)r
+ (∆uB(t))r]2

=
rαvrAv

r
B

(αvrA + vrB)2 (vA + vB) ∆u(t).

(ii) If r ∈ (r̂(
α1/r∆uA(t)

∆uB(t)
), 2],

xB(t) = (
1

r − 1
)
1
r (1− 1

r
)α1/r∆uA(t);

x̃A(t) =

{
(1− 1

r
)α1/r∆uA(t), with probability q =

α1/r∆uA(t)
∆uB(t)

( 1
r−1

)
1
r ,

0, with probability 1− q.
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Therefore,

E
[
xA(t) + xB(t)

]
= E

[
x̃A(t)/α

1/r + xB(t)

]
= (

1

r − 1
)
1
r (1− 1

r
)∆uA(t)

α1/r∆uA(t)

∆uB(t)

+ (
1

r − 1
)
1
r (1− 1

r
)α1/r∆uA(t)

= (
1

r − 1
)
1
r (1− 1

r
)α1/r∆uA(t)

(
1 +

∆uA(t)

∆uB(t)

)

= (
1

r − 1
)
1
r (1− 1

r
)α1/r

(
1 +

vA
vB

)
vAv.

(iii) If r > 2,

xB(t) = µ∗, x̃A(t) =

{
µ∗, with probability q =

α1/r∆uA(t)
∆uB(t)

,

0, with probability 1− q.

Therefore,

E
[
xA(t) + xB(t)

]
= E

[
x̃A(t)/α

1/r + xB(t)

]
=

∆uA(t)

2

α1/r∆uA(t)

∆uB(t)

+
α1/r∆uA(t)

2

=
α1/r∆uA(t)

2

[
∆uA(t)

∆uB(t)

+ 1

]

=
α1/r

2

(
1 +

vA
vB

)
vA∆u(t).

Case 2: For r = +∞, a biased Tullock contest (∆uA(t),∆uB(t), cA(t) = 1, cB(t) = 1, α) is

equivalent to a non-biased one (α∆uA(t),∆uB(t), cA(t) = 1, cB(t) = 1, α = 1). Denote the re-

sulting equilibrium effort (xA(t), xB(t)) and (x̃A(t), xB(t)), respectively. To see the equivalency,

player A(t) chooses effort xA(t) to maximize

∆uA(t) Pr(αxA(t) > xB(t))− xA(t),
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i.e.,

∆uA(t) Pr(αxA(t) > xB(t))−
1

α
αxA(t),

which is equivalent to maximizing

α∆uA(t) Pr(αxA(t) > xB(t))− αxA(t),

or

α∆uA(t) Pr(x̃A(t) > xB(t))− x̃A(t).

We therefore conclude that x̃A(t) = αxA(t). As a result, the total effort in battle t equals

E
[
xA(t) + xB(t)

]
= E

[
x̃A(t)/α + xB(t)

]
.

Case 2.1: If α∆uA(t) ≥ ∆uB(t),

x̃A(t) = µ∗, xB(t) =

{
µ∗, with probability q =

∆uB(t)
α∆uA(t)

,

0, with probability 1− q.

Therefore,

E
[
xA(t) + xB(t)

]
= E

[
x̃A(t)/α + xB(t)

]
=

∆uB(t)

2α
+

∆uB(t)

2

∆uB(t)

α∆uA(t)

=
∆uB(t)

2α

(
1 +

∆uB(t)

∆uA(t)

)

=
1

2α

(
1 +

vB
vA

)
vB∆u(t).

Case 2.2: If ∆uB(t) ≥ α∆uA(t),

xB(t) = µ∗, x̃A(t) =

{
µ∗, with probability q =

α∆uA(t)
∆uB(t)

,

0, with probability 1− q.

Therefore,

E
[
xA(t) + xB(t)

]
= E

[
x̃A(t)/α + xB(t)

]
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=
∆uA(t)

2

α∆uA(t)

∆uB(t)

+
α∆uA(t)

2

=
α∆uA(t)

2

[
∆uA(t)

∆uB(t)

+ 1

]

=
α

2

(
1 +

vA
vB

)
vA∆u(t).

In sum, for r(t) ∈ (0,+∞), when α1/r∆uA(t) ≥ ∆uB(t), the analytical formulas of βt is

βt =


rαvrAv

r
B

(αvrA+vrB)
2 (vA + vB) if r(t) ≤ r̂(

∆uB(t)
α1/r∆uA(t)

),

( 1
r−1

)
1
r (1− 1

r
) vB
α1/r

(
1 + vB

vA

)
if r(t) ∈ (r̂(

∆uB(t)
α1/r∆uA(t)

), 2],

1
2α1/r

(
1 + vB

vA

)
vB if r(t) ∈ (2,+∞),

when ∆uB(t) ≥ α1/r∆uA(t), the analytical formulas of βt is

βt =


rαvrAv

r
B

(αvrA+vrB)
2 (vA + vB) if r(t) ≤ r̂(

α1/r∆uA(t)
∆uB(t)

),

( 1
r−1

)
1
r (1− 1

r
)α1/r

(
1 + vA

vB

)
vA if r(t) ∈ (r̂(

α1/r∆uA(t)
∆uB(t)

), 2],

α1/r

2

(
1 + vA

vB

)
vA if r(t) ∈ (2,+∞),

For r(t) = +∞, when α∆uA(t) ≥ ∆uB(t), the analytical formula of βt = 1
2α

(
1 + vB

vA

)
vB;

when ∆uB(t) ≥ α∆uA(t), the analytical formula of βt = α
2

(
1 + vA

vB

)
vA.

5.2 Example 1: 3-battle contest with homogeneous battles

Recall that VA(n1, n2) (resp. VB(n1, n2)) denotes the continuation value of team A (resp.

team B) at state (n1, n2). At state (n1, n2), player A(t)’s effective prize spreads of winning

battle t is ∆uA(n1, n2) = VA(n1 + 1, n2) − VA(n1, n2 + 1) and player B(t)’s effective prize

spreads of winning battle t is ∆uB(n1, n2) = VB(n1, n2 + 1)− VB(n1 + 1, n2).

To solve the game backwards, we compute players’effective prize spreads at state (1, 1),

(1, 0), (0, 1), (0, 0).

In battle 3, none of players has incentive to make positive effort at state (2, 0) or (0, 2),

since a team wins if the team wins two battles out of three. It only remains to consider the
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state (1, 1), at which players’effective prize spreads of winning the third battle are

∆uA(1, 1) = vA; ∆uB(1, 1) = vB.

Players’winning probabilities for this battle are

pA(1, 1) =
αvrA

αvrA + vrB
; pB(1, 1) =

vrB
αvrA + vrB

.

The resulting effort is E(1, 1) =
αrvrAv

r
B(vA+vB)

(αvrA+vrB)2
.

In battle 2, at state (1, 0), players’effective prize spreads of winning battle 2 are

∆uA(1, 0) = VA(2, 0)− VA(1, 1) = VA(2, 0)− pA(1, 1)VA(2, 0) = pB(1, 1)VA(2, 0) =
vrB

αvrA + vrB
vA;

∆uB(1, 0) = VB(1, 1) = pB(1, 1)VB(1, 2) =
vrB

αvrA + vrB
vB.

Players’winning probabilities for this battle are

pA(1, 0) =
αvrA

αvrA + vrB
; pB(1, 0) =

vrB
αvrA + vrB

.

The resulting effort equals

E(1, 0) = pB(1, 1)
αrvrAv

r
B (vA + vB)

(αvrA + vrB)2
=
αrvrAv

2r
B (vA + vB)

(αvrA + vrB)3
.

Likewise, at (0, 1),

∆uA(0, 1) = VA(1, 1) = pA(1, 1)VA(2, 1) =
αvrA

αvrA + vrB
vA;

∆uB(0, 1) = VB(0, 2)− VB(1, 1) = VB(0, 2)− pB(1, 1)VB(1, 2) = pA(1, 1)vB =
αvrA

αvrA + vrB
vB.

Players’winning probabilities for this battle are

pA(0, 1) =
αvrA

αvrA + vrB
; pB(0, 1) =

vrB
αvrA + vrB

.
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The resulting effort equals

E(0, 1) = pA(1, 1)
αrvrAv

r
B (vA + vB)

(αvrA + vrB)2
=
α2rv2r

A v
r
B (vA + vB)

(αvrA + vrB)3
.

In battle 1, we denote pA :=
αvrA

αvrA+vrB
. At (0, 0), player A(1)’s effective prize spreads of

winning battle 1 is

∆uA(0, 0)

= VA(1, 0)− VA(0, 1)

= pA(1, 0)VA(2, 0) + pB(1, 0)VA(1, 1)− [pA(0, 1)VA(1, 1) + pB(0, 1)VA(0, 2)]

= pAvA + pBpAvA − [pApAvA]

= pAvA [1 + pB − pA]

= 2pApBvA.

Analogously, player B(1)’s effective prize spreads of winning battle 1 is

∆uB(0, 0) = 2pApBvB.

Players’winning probabilities for this battle are

pA(0, 0) =
αvrA

αvrA + vrB
; pB(0, 0) =

vrB
αvrA + vrB

.

The resulting effort equals

E(0, 0) = 2pApB
αrvrAv

r
B (vA + vB)

(αvrA + vrB)2
= 2

α2rv2r
A v

2r
B (vA + vB)

(αvrA + vrB)4
.

Therefore, the expected total effort

TE = E(0, 0) + pA(0, 0)E(1, 0) + pB(0, 0)E(0, 1)
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+[pA(0, 1)pB(0, 1) + pA(1, 0)pB(1, 0)]E(1, 1)

= 2pApB
αrvrAv

r
B (vA + vB)

(αvrA + vrB)2
+ pApB

αrvrAv
r
B (vA + vB)

(αvrA + vrB)2
+ pBpA

αrvrAv
r
B (vA + vB)

(αvrA + vrB)2

+2pApB
αrvrAv

r
B (vA + vB)

(αvrA + vrB)2

= 6pApB
αrvrAv

r
B (vA + vB)

(αvrA + vrB)2
,

where pA =
αvrA

αvrA+vrB
and pB =

vrB
αvrA+vrB

.

We provide an alternative way to solve the 3-battle game. In the proof of Property 1,

we show that the contest (∆uA(n1, n2),∆uB(n1, n2), cA(t) = 1, cB(t) = 1, α) is equivalent to

(∆u(n1, n2),∆u(n1, n2), cA(t) = 1/
(
α1/r(t)vA

)
, cB(t) = 1/vB, α = 1), where ∆u(n1, n2) :=

∆uA(t)(n1, n2)/vA = ∆uB(t)(n1, n2)/vB. Hence, when the state is (n1, n2), the effort in battle

t equals

E
(
xA(t) + xB(t)

)
(n1, n2) =

αrvrAv
r
B

(αvrA + vrB)2 (vA + vB) ∆u(n1, n2).

Next, we apply the above formula to derive the effort in each battle as follows.

In battle 3, at state (1, 1), since ∆uA(1, 1) = vA and ∆uB(1, 1) = vB,
∆uA(n1,n2)

vA
= 1 and

E(1, 1) =
αrvrAv

r
B(vA+vB)

(αvrA+vrB)2
.

In battle 2, at state (1, 0), since ∆uA(1, 0) = pA(1, 0)∆uA(2, 0) + pB(1, 0)∆uA(1, 1) =

pBvA, we have
∆uA(n1,n2)

vA
= pB and E(1, 0) =

αrvrAv
r
B(vA+vB)

(αvrA+vrB)2
pB.

At state (0, 1), since∆uA(0, 1) = pA(0, 1)∆uA(1, 1)+pB(0, 1)∆uA(0, 2) = pAvA,
∆uA(n1,n2)

vA
=

pA and E(0, 1) =
αrvrAv

r
B(vA+vB)

(αvrA+vrB)2
pA.

In battle 1, at (0, 0), since ∆uA(0, 0) = pA(0, 0)∆uA(1, 0)+pB(0, 0)∆uA(0, 1) = pApBvA+

pBpAvA = 2pApBvA,
∆uA(n1,n2)

vA
= 2pApB and E(0, 0) =

αrvrAv
r
B(vA+vB)

(αvrA+vrB)2
2pApB.

The expected aggregate effort thus equals

TE = E(0, 0)

+pA(0, 0)E(1, 0) + pB(0, 0)E(0, 1)

+[pA(0, 1)pB(0, 1) + pA(1, 0)pB(1, 0)]E(1, 1)
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=
αrvrAv

r
B (vA + vB)

(αvrA + vrB)2
2pApB

+
αrvrAv

r
B (vA + vB)

(αvrA + vrB)2
pApB +

αrvrAv
r
B (vA + vB)

(αvrA + vrB)2
pApB

+
αrvrAv

r
B (vA + vB)

(αvrA + vrB)2
2pApB

=
αrvrAv

r
B (vA + vB)

(αvrA + vrB)2
6pApB.

5.3 Example 1: 3-battle contest with outcome-dependent hetero-
geneity

We solve the game backwards. By Property 1, at state (n1, n2), the effort in current

battle equals E(n1, n2) = β (vA, vB, α(n1, n2), r(n1, n2)) ∆u(n1, n2). We apply the formula to

compute the effort in each battle at each possible state as follows.

In battle 3, at state (1, 1), since

∆uA(1, 1) = vA; ∆uB(1, 1) = vB,

we have ∆u(1, 1) = 1. Hence,

E(1, 1) = β (1, 1) ∆u(1, 1) = β (1, 1) ,

where β (1, 1) = β (vA, vB, α(1, 1), r(1, 1)).

In addition, one could verify that pA(1, 1) =
α(1,1)v

r(1,1)
A

α(1,1)v
r(1,1)
A +v

r(1,1)
B

and pB(1, 1) =
v
r(1,1)
B

α(1,1)v
r(1,1)
A +v

r(1,1)
B

.

In battle 2, at state (1, 0), since

∆uA(1, 0) = pA(2, 0)∆uA(2, 0) + pB(1, 1)∆uA(1, 1) = pB(1, 1)vA;

∆uB(1, 0) = pA(2, 0)∆uB(2, 0) + pB(1, 1)∆uB(1, 1) = pB(1, 1)vB,

where pB(1, 1) =
v
r(1,1)
B

α(1,1)v
r(1,1)
A +v

r(1,1)
B

. Hence,

E(1, 0) = β (1, 0) ∆u(1, 0) = β (1, 0) pB(1, 1),
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where β (1, 0) = β (vA, vB, α(1, 0), r(1, 0)) and ∆u(1, 0) = pB(1, 1) =
v
r(1,1)
B

α(1,1)v
r(1,1)
A +v

r(1,1)
B

.

At state (0, 1), we have

∆uA(0, 1) = pA(1, 1)∆uA(1, 1) + pB(0, 2)∆uA(0, 2) = pA(1, 1)∆uA(1, 1) = pA(1, 1)vA;

∆uB(0, 1) = pA(1, 1)∆uB(1, 1) + pB(0, 2)∆uB(0, 2) = pA(1, 1)vB;

where pA(1, 1) =
αvrA

αvrA+vrB
. Hence,

E(0, 1) = β (0, 1) ∆u(0, 1) = β (0, 1) pA(1, 1),

where β (0, 1) and ∆u(0, 1) = pA(1, 1).

In battle 1, the state is (0, 0), we have

∆uA(0, 0) = pA(1, 0)∆uA(1, 0) + pB(0, 1)∆uA(0, 1)

= pA(1, 0)pB(1, 1)vA + pB(0, 1)pA(1, 1)vA,

which gives

∆u(0, 0) = ∆uA(0, 0)/vA = pA(1, 0)pB(1, 1) + pB(0, 1)pA(1, 1).

Hence, the total effort in battle 1 equals

E(0, 0) = β (0, 0) ∆u(0, 0).

Therefore, the expected aggregate effort equals

TE = E(0, 0) + pA(0, 0)E(1, 0) + pB(0, 0)E(0, 1)

+[pA(0, 0)pB(1, 0) + pB(0, 0)pA(0, 1)]E(1, 1)

= [pA(1, 0)pB(1, 1) + pB(0, 1)pA(1, 1)] β (0, 0)

+pA(0, 0)pB(1, 1)β (1, 0) + pB(0, 0)pA(1, 1)β (0, 1)

+[pA(0, 0)pB(1, 0) + pB(0, 0)pA(0, 1)]β (1, 1) .
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5.4 Example 2: 5-battle contest with homogeneous battles

Consider a 5-battle contest between two teams with pairwise battles. The winner is the

team with marjority wins. By Property 1, at state (n1, n2), the effort in current battle equals

E
(
xA(t) + xB(t)

)
(n1, n2) =

αrvrAv
r
B

(αvrA + vrB)2 (vA + vB)
∆uA(n1, n2)

vA
.

We apply the above formula to solve the contest game backwards.

In battle 5, at (2, 2), we have ∆uA(2, 2) = vA, which implies that
∆uA(n1,n2)

vA
= 1. By

applying the formula in Property 1, E(1, 1) =
αrvrAv

r
B(vA+vB)

(αvrA+vrB)2
.

In battle 4, at (2, 1), we have ∆uA(2, 1) = pA(2, 1)∆uA(3, 1) + pB(2, 1)∆uB(2, 2) = pBvA,

which implies that ∆uA(n1,n2)
vA

= pB. Hence, E(2, 1) = pB
αrvrAv

r
B(vA+vB)

(αvrA+vrB)2
, where pB =

vrB
αvrA+vrB

.

Likewise, at (1, 2), we have ∆uA(1, 2) = pA(1, 2)∆uA(2, 2) + pB(1, 2)∆uB(1, 3) = pAvA,

which implies that ∆uA(n1,n2)
vA

= pA. Hence E(1, 2) = pA
αrvrAv

r
B(vA+vB)

(αvrA+vrB)2
, where pA =

αvrA
αvrA+vrB

.

In battle 3, at (1, 1), ∆uA(1, 1) = pA(1, 1)∆uA(2, 1) + pB(1, 1)∆uA(1, 2) = 2pApBvA,

which implies that ∆uA(n1,n2)
vA

= 2pApB. Hence, E(1, 1) = 2pApB
αrvrAv

r
B(vA+vB)

(αvrA+vrB)2
.

At (2, 0), ∆uA(2, 0) = pA(2, 0)∆uA(3, 0) + pB(2, 0)∆uA(2, 1) = p2
BvA, which implies that

∆uA(n1,n2)
vA

= p2
B. Hence, E(2, 0) = p2

B
αrvrAv

r
B(vA+vB)

(αvrA+vrB)2
.

At (0, 2), ∆uA(0, 2) = pA(0, 2)∆uA(1, 2) + pB(0, 2)∆uA(0, 3) = p2
AvA, which implies that

∆uA(n1,n2)
vA

= p2
A. Hence, E(0, 2) = p2

A
αrvrAv

r
B(vA+vB)

(αvrA+vrB)2
.

In battle 2, at (1, 0), ∆uA(1, 0) = pA(1, 0)∆uA(2, 0) + pB(1, 0)∆uA(1, 1) = 3pAp
2
BvA,

which implies that ∆uA(n1,n2)
vA

= 3pAp
2
B. Hence, E(1, 0) = 3pAp

2
B
αrvrAv

r
B(vA+vB)

(αvrA+vrB)2
.

At (0, 1), ∆uA(0, 1) = pA(0, 1)∆uA(1, 1) + pB(0, 1)∆uA(0, 2) = 3p2
ApBvA, which implies

that ∆uA(n1,n2)
vA

= 3p2
ApB. Hence, E(0, 1) = 3p2

ApB
αrvrAv

r
B(vA+vB)

(αvrA+vrB)2
.

In battle 1, at (0, 0), ∆uA(0, 0) = pA(0, 0)∆uA(1, 0) + pB(0, 0)∆uA(0, 1) = 6p2
Ap

2
BvA,

which implies that ∆uA(n1,n2)
vA

= 6p2
Ap

2
B. Hence, E(0, 0) = 6p2

Ap
2
B
αrvrAv

r
B(vA+vB)

(αvrA+vrB)2
.

Therefore, the expected aggregate effort equals

TE = E(0, 0)

+pAE(1, 0) + pBE(0, 1)

+p2
AE(2, 0) + p2

BE(0, 2) + 2pApBE(1, 1)
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+3p2
ApBE(2, 1) + 3pAp

2
BE(1, 2)

+6p2
Ap

2
BE(2, 2)

= 6p2
Ap

2
B

αrvrAv
r
B (vA + vB)

(αvrA + vrB)2

+3p2
Ap

2
B

αrvrAv
r
B (vA + vB)

(αvrA + vrB)2
+ 3p2

Ap
2
B

αrvrAv
r
B (vA + vB)

(αvrA + vrB)2

+p2
Ap

2
B

αrvrAv
r
B (vA + vB)

(αvrA + vrB)2
+ p2

Bp
2
A

αrvrAv
r
B (vA + vB)

(αvrA + vrB)2
+ 4p2

Ap
2
B

αrvrAv
r
B (vA + vB)

(αvrA + vrB)2

+3p2
Ap

2
B

αrvrAv
r
B (vA + vB)

(αvrA + vrB)2
+ 3p2

Ap
2
B

αrvrAv
r
B (vA + vB)

(αvrA + vrB)2

+6p2
Ap

2
B

αrvrAv
r
B (vA + vB)

(αvrA + vrB)2

= 30p2
Ap

2
B

αrvrAv
r
B (vA + vB)

(αvrA + vrB)2
,

where pA =
αvrA

αvrA+vrB
and pB =

vrB
αvrA+vrB

.

5.5 Example 2: 5-battle contest with outcome-dependent hetero-
geneity

We solve the game backwards. By Property 1, at state (n1, n2), the effort in current

battle equals E(n1, n2) = β (vA, vB, α(n1, n2), r(n1, n2)) ∆u(n1, n2). We apply the formula to

compute the effort in each battle at each possible state as follows.

In battle 5, at (2, 2), ∆uA(2, 2) = vA and thus ∆u(2, 2) = ∆uA(n1,n2)
vA

= 1. By Property 1,

E(2, 2) = β (2, 2) ∆u(2, 2) = β (2, 2).

In battle 4, at (2, 1),∆uA(2, 1) = pA(3, 1)∆uA(3, 1)+pB(2, 2)∆uA(2, 2) = pB(2, 2)∆uA(2, 2) =

pB(2, 2)vA, which implies that E(2, 1) = β (2, 1) ∆u(2, 1) = pB(2, 2)β (2, 1), where∆u(2, 1) =

pB(2, 2).

At (1, 2), ∆uA(1, 2) = pA(2, 2)∆uA(2, 2) + pB(1, 3)∆uB(1, 3) = pA(2, 2)∆uA(2, 2) =

pA(2, 2)vA, which implies that E(1, 2) = β (1, 2) ∆u(1, 2) = pA(2, 2)β (1, 2), where∆u(1, 2) =

pA(2, 2).
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In battle 3, at (1, 1),∆uA(1, 1) = pA(2, 1)∆uA(2, 1)+pB(1, 2)∆uA(1, 2) = pA(2, 1)pB(2, 2)vA+

pB(1, 2)pA(2, 2)vA, which implies thatE(1, 1) = β (1, 1) ∆u(1, 1), where∆u (1, 1) = pA(2, 1)∆u(2, 1)+

pB(1, 2)∆u(1, 2) = pA(2, 1)pB(2, 2) + pB(1, 2)pA(2, 2).

At (2, 0), ∆uA(2, 0) = pA(3, 0)∆uA(3, 0) + pB(2, 1)∆uA(2, 1) = pB(2, 1)pB(2, 2)vA, which

implies thatE(2, 0) = β (2, 0) ∆u(2, 0), where∆u(2, 0) = pB(2, 1)∆u(2, 1) = pB(2, 1)pB(2, 2).

At (0, 2), ∆uA(0, 2) = pA(1, 2)∆uA(1, 2) + pB(0, 3)∆uA(0, 3) = pA(1, 2)∆uA(1, 2) =

pA(1, 2)pA(2, 2)vA, which implies thatE(0, 2) = β (0, 2) ∆u(0, 2), where∆u(0, 2) = pA(1, 2)∆u(1, 2) =

pA(1, 2)pA(2, 2).

In battle 2, at (1, 0), player A(2)’s effective prize spread is

∆uA(1, 0)

= pA(2, 0)∆uA(2, 0) + pB(1, 1)∆uA(1, 1)

=

[
pA(2, 0)pB(2, 1)pB(2, 2) + pB(1, 1)pA(2, 1)pB(2, 2)

+pB(1, 1)pB(1, 2)pA(2, 2)

]
vA,

which implies that

∆u(1, 0)

=
∆uA(n1, n2)

vA

= pA(2, 0)pB(2, 1)pB(2, 2) + pB(1, 1)pA(2, 1)pB(2, 2) + pB(1, 1)pB(1, 2)pA(2, 2).

Hence,

E(1, 0) = β (1, 0) ∆u(1, 0).

At (0, 1), player A(2)’s effective prize spread is

∆uA(0, 1)

= pA(1, 1)∆uA(1, 1) + pB(0, 2)∆uA(0, 2)

=

[
pA(1, 1)pA(2, 1)pB(2, 2) + pA(1, 1)pB(1, 2)pA(2, 2)

+pB(0, 2)pA(1, 2)pA(2, 2)

]
vA;
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which implies that

∆u(0, 1)

=
∆uA(n1, n2)

vA

= pA(1, 1)pA(2, 1)pB(2, 2) + pA(1, 1)pB(1, 2)pA(2, 2) + pB(0, 2)pA(1, 2)pA(2, 2).

Hence, the resulting effort is

E(0, 1) = β (0, 1) ∆u(0, 1).

In battle 1, at (0, 0), player A(1)’s effective prize spread is

∆uA(0, 0)

= pA(1, 0)∆uA(1, 0) + pB(0, 1)∆uA(0, 1)

= pA(1, 0) [pA(2, 0)pB(2, 1)pB(2, 2) + pB(1, 1)pA(2, 1)pB(2, 2) + pB(1, 1)pB(1, 2)pA(2, 2)]

+pB(0, 1) [pA(1, 1)pA(2, 1)pB(2, 2) + pA(1, 1)pB(1, 2)pA(2, 2) + pB(0, 2)pA(1, 2)pA(2, 2)] ;

which implies that

∆u(0, 0)

=
∆uA(n1, n2)

vA

= pA(1, 0)pA(2, 0)pB(2, 1)pB(2, 2) + pA(1, 0)pB(1, 1)pA(2, 1)pB(2, 2)

+pA(1, 0)pB(1, 1)pB(1, 2)pA(2, 2) + pB(0, 1)pA(1, 1)pA(2, 1)pB(2, 2)

+pB(0, 1)pA(1, 1)pB(1, 2)pA(2, 2) + pB(0, 1)pB(0, 2)pA(1, 2)pA(2, 2).

One can also calculate ∆uB(n1, n2) and easily verify that ∆uA(n1,n2)
vA

= ∆uB(n1,n2)
vB

.
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Hence, the resulting effort is

TE(0, 0) = β (0, 0) ∆u(0, 0).

Therefore, the expected aggregate effort is

TE = TE(0, 0)

+pA(0, 0)TE(1, 0) + pB(0, 0)TE(0, 1)

+P (2, 0)TE(2, 0) + P (0, 2)TE(0, 2) + P (1, 1)TE(1, 1)

+P (2, 1)TE(2, 1) + P (1, 2)TE(1, 2)

+P (2, 2)TE(2, 2),

where

TE(0, 0) =

pA(1, 0)pA(2, 0)pB(2, 1)pB(2, 2) + pA(1, 0)pB(1, 1)pA(2, 1)pB(2, 2)

+pA(1, 0)pB(1, 1)pB(1, 2)pA(2, 2) + pB(0, 1)pA(1, 1)pA(2, 1)pB(2, 2)

+pB(0, 1)pA(1, 1)pB(1, 2)pA(2, 2) + pB(0, 1)pB(0, 2)pA(1, 2)pA(2, 2)

β (0, 0) ;

TE(1, 0) =

[
pA(2, 0)pB(2, 1)pB(2, 2) + pB(1, 1)pA(2, 1)pB(2, 2)

+pB(1, 1)pB(1, 2)pA(2, 2)

]
β (1, 0) ;

TE(0, 1) =

[
pA(1, 1)pA(2, 1)pB(2, 2) + pA(1, 1)pB(1, 2)pA(2, 2)

+pB(0, 2)pA(1, 2)pA(2, 2)

]
β (0, 1) ;

TE(2, 0) = pB(2, 1)pB(2, 2)β (2, 0) ;

TE(0, 2) = pA(1, 2)pA(2, 2)β (0, 2) ;

TE(1, 1) = (pA(2, 1)pB(2, 2) + pB(1, 2)pA(2, 2)) β (1, 1) ;

TE(2, 1) = pB(2, 2)β (2, 1) ;

TE(1, 2) = pA(2, 2)β (1, 2) ;

TE(2, 2) = β (2, 2) ,
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and P (n1, n2) is the probability of reaching the state (n1, n2) from (0, 0). For example,

P (2, 0) = pA(0, 0)pA(1, 0), P (0, 2) = pB(0, 0)pB(0, 1), and P (1, 1) = pA(0, 0)pB(1, 0) +

pB(0, 0)pA(0, 1).

5.6 Proof of Lemma 2

By Definition 2, we prove the lemma by discussing three cases as follows.

Case 1: At (k, n2) such that n2 ≤ k − 1, by definition,

∆uA(k, n2) = VA(k + 1, n2)− VA(k, n2 + 1)

= vA − [pA(k, n2 + 1)vA + pB(k, n2 + 1)VA(k, n2 + 2)]

= pB(k, n2 + 1) [vA − VA(k, n2 + 2)] .

In addition,

pA(k + 1, n2)∆uA(k + 1, n2) + pB(k, n2 + 1)∆uA(k, n2 + 1)

= pA(k + 1, n2) · 0 + pB(k, n2 + 1) [VA(k + 1, n2 + 1)− VA(k, n2 + 2)]

= pB(k, n2 + 1) [vA − VA(k, n2 + 2)] .

Hence, ∆uA(k, n2) = pA(k + 1, n2 + 1)∆uA(k + 1, n2) + pB(k, n2 + 1)∆uA(k, n2 + 1).

Analogously, ∆uB(k, n2) = pA(k + 1, n2)∆uB(k + 1, n2) + pB(k, n2 + 1)∆uB(k, n2 + 1).

Case 2: At (n1, k) such that n1 ≤ k − 1, by definition,

∆uA(n1, k) = VA(n1 + 1, k)− VA(n1, k + 1)

= [pA(n1 + 1, k)VA(n1 + 2, k) + pB(n1 + 1, k)VA(n1 + 1, k + 1)]− vA

= pA(n1 + 1, k) [VA(n1 + 2, k)− vA] .

In addition,

pA(n1 + 1, k)∆uA(n1 + 1, k) + pB(n1, k + 1)∆uA(n1, k + 1)
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= pA(n1 + 1, k) [VA(n1 + 2, k)− VA(n1 + 1, k + 1)] + pB · 0

= pA(n1 + 1, k) [VA(n1 + 2, k)− vA] .

Hence, ∆uA(n1, k) = pA(n1 + 1, k)∆uA(n1 + 1, k) + pB(n1, k + 1)∆uA(n1, k + 1). Analo-

gously, ∆uB(n1, k) = pA(n1 + 1, k)∆uB(n1 + 1, k) + pB(n1, k + 1)∆uB(n1, k + 1).

Case 3: At (n1, n2) such that n1, n2 ≤ k − 1,

∆uA(n1, n2) = VA(n1 + 1, n2)− VA(n1, n2 + 1)

=
pA(n1 + 1, n2)VA(n1 + 2, n2) + pB(n1 + 1, n2)VA(n1 + 1, n2 + 1)

−pA(n1, n2 + 1)VA(n1 + 1, n2 + 1)− pB(n1, n2 + 1)VA(n1, n2 + 2)

=
VA(n1 + 1, n2 + 1) + pA(n1 + 1, n2) (VA(n1 + 2, n2)− VA(n1 + 1, n2 + 1))

−VA(n1, n2 + 2)− pA(n1, n2 + 1) (VA(n1 + 1, n2 + 1)− VA(n1, n2 + 2))

= ∆uA(n1, n2 + 1) + pA(n1 + 1, n2)∆uA(n1 + 1, n2)− pA(n1, n2 + 1)∆uA(n1, n2 + 1)

= pA(n1 + 1, n2)∆uA(n1 + 1, n2) + pB(n1, n2 + 1)∆uA(n1, n2 + 1).

Analogously,

∆uB(n1, n2) = VB(n1, n2 + 1)− VB(n1 + 1, n2)

=
pA(n1, n2 + 1)VB(n1 + 1, n2 + 1) + pB(n1, n2 + 1)VB(n1, n2 + 2)

−pA(n1 + 1, n2)VB(n1 + 2, n2)− pB(n1 + 1, n2)VB(n1 + 1, n2 + 1)

=
VB(n1 + 1, n2 + 1) + pB(n1, n2 + 1) (VB(n1, n2 + 2)− VB(n1 + 1, n2 + 1))

−VB(n1 + 2, n2)− pB(n1 + 1, n2) (VB(n1 + 1, n2 + 1)− VB(n1 + 2, n2))

= ∆uB(n1 + 1, n2) + pB(n1, n2 + 1)∆uB(n1, n2 + 1)− pB(n1 + 1, n2)∆uB(n1 + 1, n2)

= pA(n1 + 1, n2)∆uB(n1 + 1, n2) + pB(n1, n2 + 1)∆uB(n1, n2 + 1).

In sum, ∆uA(n1, n2) = pA(n1 + 1, n2)∆uA(n1 + 1, n2) +pB(n1, n2 + 1)∆uA(n1, n2 + 1) and

∆uB(n1, n2) = pA(n1 + 1, n2)∆uB(n1 + 1, n2) + pB(n1, n2 + 1)∆uB(n1, n2 + 1).
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5.7 Proof of Lemma 3

At (k, k), ∆uA(k, k) = vA and ∆uB(k, k) = vB. The formula holds automatically. We

prove the lemma by mathematical induction.

Case 1: To show the lemma hold for (k, n2) with n2 ≤ k − 1, suppose the lemma holds

for n2 ≥ t+ 1, where t ≤ k−1, we want to prove that it holds for n2 ≥ t, which is equivalent

to proving the formula holds at (k, t).

At (k, t), it follows from Lemma 2 that

∆uA(k, t) = pA(k + 1, t)∆uA(k + 1, t) + pB(k, t+ 1)∆uA(k, t+ 1) = pB(k, t+ 1)∆uA(k, t+ 1);

∆uB(k, t) = pAuB(k + 1, t) + pB∆uB(k, t+ 1) = pB∆uB(k, t+ 1).

Since ∆uA(k, t+ 1)/vA = ∆uB(k, t+ 1)/vB, ∆uA(k, t)/vA = ∆uB(k, t)/vB holds.

Case 2: For (k, n2) with n2 ≤ k − 1, the proof is analogous to Case 1.

Case 3: To establish the lemma for (n1, n2) such that n1, n2 ≤ k− 1, suppose the lemma

holds for (n1 + 1, n2) and (n1, n2 + 1), it suffi ces to show that the lemma holds for (n1, n2),

which is true, since

∆uA(n1, n2) = pA(n1 + 1, n2)∆uA(n1 + 1, n2) + pB(n1, n2 + 1)∆uA(n1, n2 + 1);

∆uB(n1, n2) = pA(n1 + 1, n2)∆uB(n1 + 1, n2) + pB(n1, n2 + 1)∆uB(n1, n2 + 1).

using Lemma 2.

5.8 Proof of Proposition 1

Recall that it follows from (5) and Property 1 that E(n1, n2) = β(vA, vB, α, r)∆u(n1, n2).

We therefore rewrite (7) as

TEHomo =
∑

(n1,n2)∈S/E

Cn1
n1+n2

pn1 (1− p)n2 E(n1, n2)

=
∑

(n1,n2)

Cn1
n1+n2

pn1 (1− p)n2 β(vA, vB, α, r)∆u(n1, n2).
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Step 1: We prove ∆u(n1, n2) = γ(n1, n2)pk−n1 (1− p)k−n2 by induction, where γ(n1, n2)

is a coeffi cient that solely relies on (n1, n2). We will determine γ(n1, n2) in Step 2.

First, it follows from direct calculation that∆u(n1, n2) = ∆uA(k, k)/vA = 1 = pk−k (1− p)k−k.
Suppose now that the result holds at state (n1 +1, n2) and (n1, n2 +1), i.e., ∆u(n1 +1, n2) =

γ(n1 + 1, n2)pk−n1−1 (1− p)k−n2 and ∆u(n1, n2 + 1) = γ(n1, n2 + 1)pk−n1 (1− p)k−n2−1, it

remains to show that ∆u(n1, n2) = γ(n1, n2)pk−n1 (1− p)k−n2 , which holds since

∆u(n1, n2)

= p∆u(n1 + 1, n2) + (1− p)∆u(n1, n2 + 1)

= γ(n1 + 1, n2)pk−n1 (1− p)k−n2 + γ(n1, n2 + 1)pk−n1 (1− p)k−n2

= [γ(n1 + 1, n2) + γ(n1, n2 + 1)] pk−n1 (1− p)k−n2

= γ(n1, n2)pk−n1 (1− p)k−n2 ,

where γ(n1, n2) := γ(n1 + 1, n2) + γ(n1, n2 + 1).

Step 2: For any t ∈ {1, 2, ..., 2k}, we show that
∑

n1+n2=tC
n1
n1+n2γ(n1, n2) = Ck

2k holds by

induction.

First, it holds at (k, k) clearly, asCk
2kγ(k, k) = Ck

2k. Suppose
∑

(n1+n2)=t+1C
n1
n1+n2γ(n1, n2) =

Ck
2k holds, we want to prove

∑
(n1+n2)=tC

n1
n1+n2γ(n1, n2) = Ck

2k. For that, we consider∑
(n1+n2)=t

Cn1
n1+n2

γ(n1, n2)

=
∑

(n1+n2)=t

Cn1
n1+n2

[γ(n1 + 1, n2) + γ(n1, n2 + 1)]

=
∑

(n1+n2)=t+1

Cn1−1
n1+n2−1γ(n1, n2) +

∑
(n1+n2)=t+1

Cn1
n1+n2−1γ(n1, n2)

=
∑

(n1+n2)=t+1

n1

n1 + n2

Cn1
n1+n2

γ(n1, n2) +
∑

(n1+n2)=t+1

n2

n1 + n2

Cn1
n1+n2

γ(n1, n2)

=
∑

(n1+n2)=t+1

Cn1
n1+n2

γ(n1, n2)

= Ck
2k.
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With the results in Steps 1 and 2,

TEHomo =
∑

(n1,n2)

Cn1
n1+n2

pn1 (1− p)n2 β(vA, vB, α, r)∆u(n1, n2)

=
∑

(n1,n2)

Cn1
n1+n2

γ(n1, n2)β(vA, vB, α, r)p
k (1− p)k

=
2k∑
t=1

∑
n1+n2=t

Cn1
n1+n2

γ(n1, n2)β(vA, vB, α, r)p
k (1− p)k

=

2k∑
t=1

Ck
2kβ(vA, vB, α, r)p

k (1− p)k

= (2k + 1)Ck
2kp

k (1− p)k β(vA, vB, α, r).

5.9 Proof of Proposition 2

By Property 1, the expected total effort equals

TEHete,k =
∑

(n1,n2)∈S/E

P (n1, n2)E(n1, n2)

=
∑

(n1,n2)∈S/E

 ∑
g∈G((0,0),(n1,n2))

P (g)

 β(n1, n2)∆u(n1, n2),

where P (n1, n2) =
∑

g∈G((0,0),(n1,n2)) P (g) is the probability that the state (n1, n2) is reached.

It then remains to show that

∆u(n1, n2) =
∑

g∈G((n1,n2),(k,k))

P̂ (g).

We prove the above equation by induction. For (n1, n2) = (k − 1, k), on one hand, it

follows from (11) that ∆u(k− 1, k) = P̂ ((k− 1, k), (k, k)) = pA(k, k). On the other hand, by

direct calculation or (3), we have

∆u(k − 1, k) = ∆uA(k − 1, k)/vA
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= (uA(k, k)− uA(k − 1, k + 1)) /vA

= (pA(k, k)uA(k + 1, k) + pB(k, k)uA(k, k + 1)) /vA

= pA(k, k),

which means (11) holds for state (k − 1, k).

Analogously, for (n1, n2) = (k, k − 1), by direct calculation or (3), we have

∆u(k, k − 1) = ∆uA(k, k − 1)/vA

= (uA(k + 1, k − 1)− uA(k, k)) /vA

= (vA − pA(k, k)uA(k + 1, k) + pB(k, k)uA(k, k + 1)) /vA

= pB(k, k),

which coincides with the expression derived from (11).

Suppose that the formula holds for (n1 + 1, n2) and (n1, n2 + 1), i.e., ∆u(n1 + 1, n2) =∑
g∈G((n1+1,n2),(k,k)) P̂ (g) and ∆u(n1, n2 + 1) =

∑
g∈G((n1,n2+1),(k,k)) P̂ (g) hold. By applying

(6), we have

∆u(n1, n2)

= pA(n1 + 1, n2)∆u(n1 + 1, n2) + pB(n1, n2 + 1)∆u(n1, n2 + 1)

= pA(n1 + 1, n2)
∑

g∈G((n1+1,n2),(k,k))

P̂ (g) + pB(n1, n2 + 1)
∑

g∈G((n1,n2+1),(k,k))

P̂ (g)

= p̂((n1, n2), (n1 + 1, n2))
∑

g∈G((n1+1,n2),(k,k))

P̂ (g) + p̂((n1, n2), (n1, n2 + 1))
∑

g∈G((n1,n2+1),(k,k))

P̂ (g)

=
∑

g∈G((n1,n2),(k,k))

P̂ (g),

using Definition 3. In other words, (11) holds for any (n1, n2) ∈ S/E.
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5.10 Proof of Corollary 1

TEHete,k =
∑

(n1,n2)∈S/E

 ∑
g∈G((0,0),(n1,n2))

P (g)

 ∑
g∈G((n1,n2),(k,k))

P̂ (g)

 β(n1, n2)

=
∑

t∈{1,...,2k+1}

∑
n1+n2=t

 ∑
g∈G((0,0),(n1,n2))

P (g)

 ∑
g∈G((n1,n2),(k,k))

P̂ (g)

 β.

When α and r are invariant across the states,
∑

g∈G((n1,n2),(k,k)) P̂ (g) =
∑

g∈G((n1,n2),(k,k)) P (g),

since the winning probability p := pA(n1, n2) does not depend on the state. As a result, for a

state (n1, n2) ∈ S/E,
(∑

g∈G((0,0),(n1,n2)) P (g)
)(∑

g∈G((n1,n2),(k,k)) P̂ (g)
)
equals the probabil-

ity of a particular path that connects (0, 0) and (k, k) and crosses state (n1, n2). Therefore,

for any given t ∈ {1, ..., 2k + 1},
∑

n1+n2=t

(∑
g∈G((0,0),(n1,n2)) P (g)

)(∑
g∈G((n1,n2),(k,k)) P̂ (g)

)
equals the probability of a path connecting (0, 0) and (k, k), which implies that

∑
n1+n2=t

 ∑
g∈G((0,0),(n1,n2))

P (g)

 ∑
g∈G((n1,n2),(k,k))

P̂ (g)



=
∑

n1+n2=t

 ∑
g∈G((0,0),(n1,n2))

P (g)

 ∑
g∈G((n1,n2),(k,k))

P (g)


=

∑
g∈G((0,0),(k,k))

P (g)

= Ck
2kp

k(1− p)k.

By direct substitution, we have

TEHete,k =
∑

t∈{1,...,2k+1}

Ck
2kp

k(1− p)kβ

= (2k + 1)Ck
2kp

k(1− p)kβ.

= TEHomo,k.
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5.11 Proof of Lemma 5

The total effort function in (10) can be rewritten as

TEHete,k =
∑

(n1,n2)∈S/E

 ∑
g∈G((0,0),(n1,n2))

P (g)

 ∑
g∈G((n1,n2),(k,k))

P̂ (g)

 β(n1, n2)

=
∑

t∈{0,...,2k}

∑
n1+n2=t

 ∑
g∈G((0,0),(n1,n2))

P (g)

 ∑
g∈G((n1,n2),(k,k))

P̂ (g)

 β(n1, n2).

Depending on the state (n1, n2), pA(n′1, n
′
2) may affect the probability of a path and

players’incentive along a path, i.e.,
∑

g∈G((0,0),(n1,n2)) P (g) and
∑

g∈G((n1,n2),(k,k)) P̂ (g). Recall

that, by 3, p((n′1, n
′
2), (n′1 +1, n′2)) = pA(n′1, n

′
2), p((n′1, n

′
2), (n′1, n

′
2 +1)) = pB(n′1, n

′
2), p̂((n′1−

1, n′2), (n′1, n
′
2)) = pA(n′1, n

′
2), and p̂((n′1, n

′
2 − 1), (n′1, n

′
2)) = pB(n′1, n

′
2).

To proceed, we first rewrite the expected aggregate effort as

TEHete,k

=
∑

t∈{0,...,2k}

∑
n1+n2=t

(n1,n2)∈S/E

 ∑
g∈G((0,0),(n1,n2))

P (g)

 ∑
g∈G((n1,n2),(k,k))

P̂ (g)

 β(n1, n2)

=
∑

t∈{0,...,t′}

∑
n1+n2=t

(n1,n2)∈S/E

 ∑
g∈G((0,0),(n1,n2))

P (g)

 ∑
g∈G((n1,n2),(k,k))

P̂ (g)

 β(n1, n2)

+
∑

t∈{t′+1,...,2k}

∑
n1+n2=t

(n1,n2)∈S/E

 ∑
g∈G((0,0),(n1,n2))

P (g)

 ∑
g∈G((n1,n2),(k,k))

P̂ (g)

 β(n1, n2),

where ∑
g∈G((0,0),(n1,n2))

P (g)
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=

(∑
g∈G((0,0),(n′1,n

′
2)) P (g)

)(∑
g∈G((n′1,n

′
2),(n1,n2)) P (g)

)
+
∑

n′′1+n′′2=t′

(n′′1 ,n
′′
2 )6=(n′1,n

′
2)

(∑
g∈G((0,0),(n′′1 ,n

′′
2 )) P (g)

)(∑
g∈G((n′′1 ,n

′′
2 ),(n1,n2)) P (g)

)

=

(∑
g∈G((0,0),(n′1,n

′
2)) P (g)

)( pA(n′1, n
′
2)
∑

g∈G((n′1+1,n′2),(n1,n2)) P (g)

+ (1− pA(n′1, n
′
2))
∑

g∈G((n′1,n
′
2+1),(n1,n2)) P (g)

)
+
∑

n′′1+n′′2=t′

(n′′1 ,n
′′
2 )6=(n′1,n

′
2)

(∑
g∈G((0,0),(n′′1 ,n

′′
2 )) P (g)

)(∑
g∈G((n′′1 ,n

′′
2 ),(n1,n2)) P (g)

) ,

which means that
∑

g∈G((0,0),(n1,n2)) P (g) is a linear function of pA(n′1, n
′
2) for any (n1, n2) and

the coeffi cient of pA(n′1, n
′
2) in

∑
g∈G((0,0),(n1,n2)) P (g) equals ∑

g∈G((0,0),(n′1,n
′
2))

P (g)

 ∑
g∈G((n′1+1,n′2),(n1,n2))

P (g)−
∑

g∈G((n′1,n
′
2+1),(n1,n2))

P (g)

 .

Since pA(n′1, n
′
2) would only affect the probabilities of the paths after battle t′ = n′1+n′2+1,

its effect on the expected aggregate effort through affecting the probability of paths can be

summarized by

I =
∑

t∈{t′+1,...,2k}

∑
n1+n2=t

(n1,n2)∈S/E

 ∑
g∈G((0,0),(n′1,n

′
2))

P (g)

( ∑
g∈G((n′1+1,n′2),(n1,n2)) P (g)

−
∑

g∈G((n′1,n
′
2+1),(n1,n2)) P (g)

)

·

 ∑
g∈G((n1,n2),(k,k))

P̂ (g)

 β(n1, n2)

=
∑

t∈{t′+1,...,2k}

∑
n1+n2=t

(n1,n2)∈S/E

 ∑
g∈G((0,0),(n′1,n

′
2))

P (g)

( ∑
g∈G((n′1+1,n′2),(n1,n2)) P (g)

−
∑

g∈G((n′1,n
′
2+1),(n1,n2)) P (g)

)

·∆u(n1, n2)β(n1, n2),

using ∆u(n1, n2) =
∑

g∈G((n1,n2),(k,k)) P̂ (g).

Analogously, to determine how pA(n′1, n
′
2) affects the incentives, i.e., P̂ (g), we rewrite

TEHete,k
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=
∑

t∈{0,...,2k}

∑
n1+n2=t

(n1,n2)∈S/E

 ∑
g∈G((0,0),(n1,n2))

P (g)

 ∑
g∈G((n1,n2),(k,k))

P̂ (g)

 β(n1, n2)

=
∑

t∈{0,...,t′−1}

∑
n1+n2=t

(n1,n2)∈S/E

 ∑
g∈G((0,0),(n1,n2))

P (g)

 ∑
g∈G((n1,n2),(k,k))

P̂ (g)

 β(n1, n2)

+
∑

t∈{t′,...,2k}

∑
n1+n2=t

(n1,n2)∈S/E

 ∑
g∈G((0,0),(n1,n2))

P (g)

 ∑
g∈G((n1,n2),(k,k))

P̂ (g)

 β(n1, n2),

where ∑
g∈G((n1,n2),(k,k))

P̂ (g)

=

∑
g∈G((n1,n2),(n′1,n

′
2)) P̂ (g)

(∑
g∈G((n′1,n

′
2),(k,k)) P̂ (g)

)
+
∑

n′′1+n′′2=t′

(n′′1 ,n
′′
2 )6=(n′1,n

′
2)

∑
g∈G((n1,n2),(n′′1 ,n

′′
2 )) P̂ (g)

(∑
g∈G((n′′1 ,n

′′
2 ),(k,k)) P̂ (g)

)

=

∑
g∈G((n1,n2),(n′1−1,n′2)) P̂ (g)P̂ ((n′1 − 1, n′2), (n′1, n

′
2))
(∑

g∈G((n′1,n
′
2),(k,k)) P̂ (g)

)
+
∑

g∈G((n1,n2),(n′1,n
′
2−1)) P̂ (g)P̂ ((n′1, n

′
2 − 1), (n′1, n

′
2))
(∑

g∈G((n′1,n
′
2),(k,k)) P̂ (g)

)
+
∑

n′′1+n′′2=t′

(n′′1 ,n
′′
2 ) 6=(n′1,n

′
2)

∑
g∈G((n1,n2),(n′′1 ,n

′′
2 )) P̂ (g)

(∑
g∈G((n′′1 ,n

′′
2 ),(k,k)) P̂ (g)

)

=

∑
g∈G((n1,n2),(n′1−1,n′2)) P̂ (g)pB(n′1, n

′
2)
(∑

g∈G((n′1,n
′
2),(k,k)) P̂ (g)

)
+
∑

g∈G((n1,n2),(n′1,n
′
2−1)) P̂ (g)pA(n′1, n

′
2)
(∑

g∈G((n′1,n
′
2),(k,k)) P̂ (g)

)
+
∑

n′′1+n′′2=t′

(n′′1 ,n
′′
2 ) 6=(n′1,n

′
2)

∑
g∈G((n1,n2),(n′′1 ,n

′′
2 )) P̂ (g)

(∑
g∈G((n′′1 ,n

′′
2 ),(k,k)) P̂ (g)

)

=

∑
g∈G((n1,n2),(n′1−1,n′2)) P̂ (g) (1− pA(n′1, n

′
2))
(∑

g∈G((n′1,n
′
2),(k,k)) P̂ (g)

)
+
∑

g∈G((n1,n2),(n′1,n
′
2−1)) P̂ (g)pA(n′1, n

′
2)
(∑

g∈G((n′1,n
′
2),(k,k)) P̂ (g)

)
+
∑

n′′1+n′′2=t′

(n′′1 ,n
′′
2 )6=(n′1,n

′
2)

∑
g∈G((n1,n2),(n′′1 ,n

′′
2 )) P̂ (g)

(∑
g∈G((n′′1 ,n

′′
2 ),(k,k)) P̂ (g)

) .

which means that
∑

g∈G((n1,n2),(k,k)) P̂ (g) is a linear function of pA(n′1, n
′
2) for any (n1, n2) and
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the coeffi cient of pA(n′1, n
′
2) in

∑
g∈G((n1,n2),(k,k)) P̂ (g) equals− ∑

g∈G((n1,n2),(n′1,n
′
2−1))

P̂ (g) +
∑

g∈G((n1,n2),(n′1−1,n′2))

P̂ (g)

 ∑
g∈G((n′1,n

′
2),(k,k))

P̂ (g)

 .

Since pA(n′1, n
′
2) would only affect the incentives, i.e., P̂ (g) before battle t′− 1 = n′1 +n′2,

its effect on the expected aggregate effort through affecting the players’incentive along the

paths can be summarized by

II =
∑

t∈{0,...,t′−1}

∑
n1+n2=t

(n1,n2)∈S/E

 ∑
g∈G((0,0),(n1,n2))

P (g)



·

( ∑
g∈G((n1,n2),(n′1−1,n′2)) P̂ (g)

−
∑

g∈G((n1,n2),(n′1,n
′
2−1)) P̂ (g)

) ∑
g∈G((n′1,n

′
2),(k,k))

P̂ (g)

 β(n1, n2)

=
∑

t∈{0,...,t′−1}

∑
n1+n2=t

(n1,n2)∈S/E

 ∑
g∈G((0,0),(n1,n2))

P (g)



·
( ∑

g∈G((n1,n2),(n′1−1,n′2)) P̂ (g)

−
∑

g∈G((n1,n2),(n′1,n
′
2−1)) P̂ (g)

)
∆u(n′1, n

′
2)β(n1, n2),

using ∆u(n1, n2) =
∑

g∈G((n1,n2),(k,k)) P̂ (g).

Combining the results above, we conclude that the coeffi cient of pA(n′1, n
′
2) in TEHete,k

is I + II.

5.12 Example 1 (Continue)

Consider a best-of-three team contest with outcome-dependent heterogeneity. It follows

from Lemma 5 that the coeffi cient of pA(n′1, n
′
2) in TEHete is ϕ(α/α(n′1, n

′
2)). To apply the

formula to compute ϕ(α/α(0, 0)), let (n′1, n
′
2) = (0, 0), we have

I = P ((0, 0), (0, 0)) [P ((1, 0), (1, 0))− P ((0, 1), (1, 0))] P̂ ((1, 0), (1, 1))β(1, 0)
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+P ((0, 0), (0, 0)) [P ((1, 0), (0, 1))− P ((0, 1), (0, 1))] P̂ ((0, 1), (1, 1))β(0, 1)

+P ((0, 0), (0, 0)) [P ((1, 0), (1, 1))− P ((0, 1), (1, 1))] P̂ ((1, 1), (1, 1))β(1, 1)

= 1 · [1− 0] pB(1, 1)β(1, 0) + 1 · [0− 1] pA(1, 1)β(0, 1)

+1 · [pB(1, 0)− pA(0, 1)] · 1 · β(1, 1)

= pB(1, 1)β(1, 0)− pA(1, 1)β(0, 1) + (pB(1, 0)− pA(0, 1)) β(1, 1),

and II = 0. Hence, the coeffi cient of pA(0, 0) in TEHete,k=1 is

ϕ(α/α(0, 0)) = I + II = pB(1, 1)β(1, 0)− pA(1, 1)β(0, 1) + (pB(1, 0)− pA(0, 1)) β(1, 1).

Recall that TEHete,k=1 can be decomposed into ϕ(α/α(0, 0))pA(0, 0)+ω(α/α(0, 0))β (0, 0)

and other terms that are independent of α(0, 0), where ω(α/α(0, 0)) =
∑

g∈G((0,0),(1,1)) P̂ (g) =

pA(1, 0)pB(1, 1) + pB(0, 1)pA(1, 1).

In Example 2, we show that

TEHete,k=1(α, r) = [pA(1, 0)pB(1, 1) + pB(0, 1)pA(1, 1)] β (0, 0)

+pA(0,0)pB(1, 1)β (1, 0) + pB(0,0)pA(1, 1)β (0, 1)

+[pA(0,0)pB(1, 0) + pB(0,0)pA(0, 1)]β (1, 1) .

By rearrangement, we have

TEHete,k=1(α, r) = pA(0, 0)

[
pB(1, 1)β (1, 0)− pA(1, 1)β (0, 1)

+ (pB(1, 0)− pA(0, 1)) β (1, 1)

]

+pA(1, 1)β (0, 1) + pA(0, 1)]β (1, 1)

+ [pA(1, 0)pB(1, 1) + pB(0, 1)pA(1, 1)] β (0, 0) ,

using pB(0, 0) = 1− pA(0, 0).

By direct comparison, the two approaches yield the same ϕ(α/α(0, 0)). Analogously, one
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can check that

ϕ(α/α(1, 0)) = pB(1, 1)β (0, 0)− pA(0, 0)β (1, 1) ;

ϕ(α/α(0, 1)) = −pA(1, 1)β (0, 0) + pB(0, 0)β (1, 1) ;

ϕ(α/α(1, 1)) = [−pA(1, 0) + pB(0, 1)] β (0, 0)− pA(0, 0)β (1, 0) + pB(0, 0)β (0, 1) .

using the two approaches.

5.13 Example 2 (Continue)

For a best-of-five team contest with outcome-dependent heterogeneity, we consider two

approaches to derive ϕ(α/α(1, 2)). The first approach relies on Lemma 5. The second one

relies on the direct calculation using the expected aggregate effort derived in Example 2.

In the first approach, we apply the formula in Lemma 5 to compute ϕ(α/α(1, 2)). Let

(n′1, n
′
2) = (1, 2), direct substitution yields

I = P ((0, 0), (1, 2)) [P ((2, 2), (2, 2))− P ((1, 3), (2, 2))] P̂ ((2, 2), (2, 2))β(2, 2)

= P (1, 2)β(2, 2).

and

II = (pB(0, 1)pB(0, 2)− pA(1, 0)pB(1, 1)− pB(0, 1)pA(1, 1)) pA(2, 2)β(0, 0)

−P (1, 0)pB(1, 1)pA(2, 2)β(1, 0)

+P (0, 1) (pB(0, 2)− pA(1, 1)) pA(2, 2)β(0, 1)

+P (0, 2)pA(2, 2)β(0, 2)− P (1, 1)pA(2, 2)β(1, 1),

using P (n1, n2) := P ((0, 0), (n1, n2)). By Lemma 5, ϕ(α/α(1, 2)) = I + II. Moreover,

TEHete,k=2(α, r) = ϕ(α/α(1, 2))pA(1, 2)+ω(α/α(1, 2))β(1, 2), where ω(α/α(1, 2)) := P (1, 2)pA(2, 2).

For the second approach, we rewrite the expected aggregate effort in Example 2 as

TEHete,k=2(α, r)
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=


(−pA(1, 0)pB(1, 1)− pB(0, 1)pA(1, 1) + pB(0, 1)pB(0, 2)) pA(2, 2)β(0, 0)

−pA(0, 0)pB(1, 1)pA(2, 2)β (1, 0)

+pB(0, 0) (−pA(1, 1) + pB(0, 2)) pA(2, 2)β (0, 1)

+P (0, 2)pA(2, 2)β (0, 2)− P (1, 1)pA(2, 2)β (1, 1)

+P (1, 2)β (2, 2)

 pA(1, 2)

+P (1, 2)pA(2, 2)β (1, 2)

+T (α/α(1, 2)),

using pB(1, 2) = 1−pA(2, 2) and P (2, 2) = P (1, 2)pA(1, 2)+P (2, 1)pB(2, 1), and T (α/α(1, 2))

denotes terms that do not involve α(1, 2). By direct comparison, the two approaches generate

the same result.
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