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Abstract

We study optimal information disclosure via an ambiguous persuasion approach in

a two-player contest. The designer can precommit to an ambiguous device to influ-

ence the uninformed contestant’s belief about his opponent’s private type. We fully

characterize the optimal ambiguous information structures when players are maxmin

expected utility (MMEU) maximizers. Depending on the prior, it is optimal to either

induce ambiguity or fully conceal information. We provide a necessary and suffi cient

condition under which an effort-maximizing organizer can benefit strictly more from

using ambiguous persuasion than from using the optimal Bayesian device.
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1 Introduction

Contest organizers often promote productive effort from contestants through contests.

For example, employees within a company compete for promotion, school students make

efforts to compete for college admissions, athletes spend years in training to rank better

in sports events, and firms engage in research tournaments to win a patent race. In those

competitive situations, the resources/effort devoted are usually costly and irreversible. When

a contestant decides how much effort to expend strategically, information about his rival’s

private type becomes crucial. A contest organizer who aims to maximize effort can therefore

manipulate a contestant’s belief about his opponent by disclosing relevant information. In

this paper, we allow a contest organizer to disclose ambiguous information in a contest with

ambiguity-averse players.1

Intentional ambiguity is a ubiquitous phenomenon, as organizers often reveal information

without explaining its credibility, which naturally creates ambiguity in real-world situations.

For instance, when a new entrant competes against an incumbent employee for a job position,

a manager could disclose relevant information about the new candidate in a mild, vague and

roundabout way, which leaves the incumbent uncertain about his competitor’s capability.

Moreover, ambiguity arises when there exist multiple information channels. Consider two

firms competing for a procurement contract: A contest organizer usually possesses informa-

tion about the firms’capacities as well as their proposals, and can inform an uninformed firm

that his opponent is strong but does not specify how the conclusion is drawn. In this case,

the message of “strong”is ambiguous, as the uninformed firm is uncertain whether the infor-

mation released is based on the firm’s competence or the quality of the proposal. A question

naturally arises here: Should an effort-maximizing organizer leave his message ambiguous

without specifying the exact information channel that generates the message? More gener-

ally, we ask the following research questions: Would an effort-maximizing organizer choose

to disclose ambiguous information intentionally? What is the optimal (ambiguous) infor-

mation structure in general? Could an organizer do strictly better by using an ambiguous

information device than by using the optimal probabilistic device?

To seek the answers, we study the optimal design of information disclosure when an

organizer is allowed to use ambiguous information structures in a binary-state environ-

1See Gilboa and Marinacci (2016) for a recent survey of the literature on ambiguity aversion and its
axiomatic foundations. See Mukerji and Tallon (2004) and Epstein and Schneider (2010) for two surveys on
the economic and financial applications of ambiguity aversion.
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ment. Specifically, an ambiguous information device consists of multiple probabilistic de-

vices/signals. It is shown in Kamenica and Gentzkow (2011) that each probabilistic de-

vice/signal induces a Bayes-plausible distribution over posteriors. Meanwhile, by observing

a message induced by an ambiguous device, the uninformed player (receiver) forms a set of

posteriors. We assume that the uninformed player applies the full Bayesian rule to update

his belief (see (Epstein and Schneider, 2007; Pires, 2002)) and that players are maxmin ex-

pected utility (MMEU) maximizers (see (Gilboa and Schmeidler, 1989)). In particular, the

organizer maximizes his maxmin objective, which is the expected total effort.

In our model, two contestants compete in a one-sided incomplete information contest.

The valuation of the uninformed contestant is commonly known, while the informed player’s

valuation is his own private information, which can be either high or low. The binary distri-

bution of the valuation is common knowledge for all players including the contest organizer.

Prior to the contest, the organizer can design and precommit to an (ambiguous) information

device, which would be announced to the public once decided.2 According to the information

policy, a message is drawn and observed by all players. Based on the revealed information

device and the realized message, the uninformed contestant forms a set of posteriors and

then both contestants make their efforts simultaneously.3

In the paper, we allow a contest organizer to disclose information via an ambiguous device.

As an MMEU maximizer, the uninformed contestant would take the worst-case belief among

all the posteriors induced by the realized message. In our contest game, the more likely his

opponent is to be a high-type, the lower the payoff that a contestant expects to receive. By

introducing proper ambiguity, the organizer can persuade an ambiguity-averse contestant to

always “overestimate”the strength of his opponent.4 However, it is infeasible to persuade

an uninformed contestant to “underestimate”his opponent on average. This is because the

worst-case posterior that the uninformed contestant takes first-order stochastically dominates

all others within the induced set of posteriors, as it assigns the greatest possible probability

to the event that his opponent is a high-type.

We fully characterize the optimal ambiguous information structures in the contest game.

As we will show, when the prior probability of a high-type is lower than a cutoff, the orga-

2In contrast to Zhang and Zhou (2016) studying probabilistic information disclosure in this setting, we
examine the use of ambiguous information disclosure in maximizing the total effort in the same setting.

3If the information device is a Bayesian one, the set of posteriors boils down to a single posterior.
4The notion of overestimation differs from overconfidence in Deng, Fang, Fu, and Wu (2021), who assume

that players hold different priors. In contrast, we compare the uninformed contestest’s belief before and after
persuasion, i.e., his prior and worst-case posterior belief.
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nizer can induce both contestants to always exert the greatest effort by disclosing ambiguous

information; otherwise, a deterministic information policy would be optimal. When it is

optimal to introduce ambiguity, we construct the effort-maximizing ambiguous signal under

which the uninformed player “overestimates”his opponent with probability one, regardless

of the realized message. For the remaining case, we apply the concavification approach by

Kamenica and Gentzkow (2011) and Beauchêne, Li, and Li (2019) to establish the optimality

of full concealment.5 Our results indicate that depending on the prior, an effort-maximizing

organizer should either induce ambiguity or simply stay silent. More precisely, the com-

parison between the prior probability of a high-type and the identified cutoff determines:

(1) which kind of policy is optimal and (2) when an effort-maximizing organizer can benefit

strictly more from using the optimal ambiguous device than from using the optimal Bayesian

one. Moreover, we show that there exist uncountably many optimal information structures

whenever it is optimal to induce ambiguity. Recall that a maxmin contestant’s effort choice

is determined solely by his worst-case belief. We formally establish that an ambiguous device

is optimal if and only if the worst posterior belief of the contestant can attain the desired

one.

In this contest setting, we consider ambiguous information structures for two reasons.

From an applied perspective, ambiguous information is commonly observed in practice, for

example, a contest organizer can disclose relevant information without specifying the exact

information generating mechanism. As a result, the uninformed player does not know the

credibility of the information.6 More theoretically, allowing ambiguous devices grants an

organizer a great deal of flexibility in designing the information structures. Our result

demonstrates that the additional flexibility can benefit an effort-maximizing organizer in

many circumstances. This implies that an effort-maximizing organizer would intentionally

generate ambiguous information in a competitive situation.

Related Literature. The literature on information disclosure/Bayesian persuasion has
grown rapidly in recent years, see, e.g., Rayo and Segal (2010), Kamenica and Gentzkow

(2011), and Bergemann and Morris (2016a,b), among others. Economic applications of

information design to contests have also attracted much attention recently. Earlier literature

concerning information disclosure in contests focuses mainly on deterministic information

5Beauchêne, Li, and Li (2019) generalize the concavification approach by Kamenica and Gentzkow (2011)
to characterize the value of optimal ambiguous persuasion.

6If the organizer is restricted to use a Bayesian device, the organizer has to specify the information
structure. In that case, the uninformed player knows which information structure that generates the revealed
information.
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policies. Some of these studies focus on the comparison between full disclosure and full

concealment, e.g., Wärneryd (2003), Fu, Jiao, and Lu (2014), Denter, Morgan, and Sisak

(2014), and Chen, Jiang, and Knyazev (2017), etc. While others compare the complete-

and incomplete-information settings, e.g., Morath and Münster (2008), Wasser (2013), and

Kovenock, Morath, and Münster (2015), etc. In addition, Serena (2021) explores type-

dependent deterministic information disclosure in Tullock contests and Lu, Ma, and Wang

(2018) further investigate such deterministic information policies in all-pay auctions. More

recent studies allow a contest organizer to provide probabilistic information through Bayesian

persuasion approach by Kamenica and Gentzkow (2011), e.g., Zhang and Zhou (2016), Chen,

Kuang, and Zheng (2019), Feng (2020), Chen (2021), Deng, Fang, Fu, and Wu (2021), Chen,

Kuang, and Zheng (2022), and Kuang, Zhao, and Zheng (2022), among others. The current

paper differs from the previous literature in that here, the contest organizer can choose to

use ambiguous signals. In our contest model, we show that an effort-maximizing organizer

can elicit more effort by using ambiguous information structures than by using Bayesian

devices in many cases.

This paper is closest to Zhang and Zhou (2016), who apply a Bayesian persuasion ap-

proach to explore the optimal probabilistic information disclosure in contests. They find

that when the private type is binary, comparing only deterministic information policies does

not sacrifice generality.7 The paper complements Zhang and Zhou (2016) by adopting the

same model setup but allowing for the use of ambiguous information structures. We show

that ambiguous devices can elicit strictly more effort than Bayesian devices in many cir-

cumstances; as a result, focusing on deterministic information policies would cause a loss in

a binary-state environment when ambiguous information structures are taken into account.

As a by-product, we solve for the two-player contest game when one player makes his effort

decision under uncertainty.

Technically, our paper benefits from Beauchêne, Li, and Li (2019). They characterize

the optimal value of ambiguous persuasion and provide useful constructions to approach

this value.8 Relying on their approach, we identify the optimal effort in the contest game.

However, it remains unclear whether there exists an optimal information structure that can

induce the exact optimal effort identified. We show that the optimal effort can be always

achieved in our two state-infinite actions contest game and two messages would be suffi cient.

7When the state goes beyond two, they provide a useful procedure to compute the optimal signal, which
yields partial characterization of the optimal information structure, e.g., full disclosure and semi-separating.

8See Proof of Proposition 1, Examples 3 and 4, and Footnote 23 in Beauchêne, Li, and Li (2019).
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Moreover, we provide a full characterization by constructing all the optimal information

structures that can attain the optimal effort.

The current paper is also related to recent studies on ambiguous communication between

strategic players.9 Blume and Board (2014), Bose and Renou (2014), Kellner and Le Que-

ment (2017), and Kellner and Le Quement (2018) investigate ambiguous communication in

a cheap-talk model in which the sender has no commitment power. While Beauchêne, Li,

and Li (2019), Cheng (2021), and Tang (2021) assume that the sender can fully commit to

the ambiguous communication device.

The remainder of this paper is organized as follows. In Section 2, we introduce the contest

model with one-sided incomplete information. In Section 3, we study the belief-updating

process, characterize the equilibrium, and formalize the organizer’s problem, successively.

Combining the results, we derive the optimal ambiguous information disclosure. Section 5

provides discussions and concludes.

2 Model

We consider a static contest game between two players under one-sided incomplete infor-

mation.10 The two risk-neutral players, indexed by i ∈ {A, B}, compete for a single prize
by exerting irreversible efforts simultaneously. We employ a lottery contest success function

(CSF) to model the competition: Given any effort profile (xA, xB) with xA, xB ∈ [0,+∞),

the winning probability of player i equals

pi(xA, xB) =

{
xi/(xA + xB) if (xA, xB) 6= (0, 0),

1/2 if (xA, xB) = (0, 0).

Each player incurs a unity marginal cost for exerting effort. Denoting player i’s valuation

9In addition, there is a growing literature on mechanism design with ambiguity-averse players, e.g., Bose,
Ozdenoren, and Pape (2006), Frankel (2014), Di Tillio, Kos, and Messner (2016), Wolitzky (2016), Ayouni
and Koessler (2017), Guo (2019), and Lopomo, Rigotti, and Shannon (2021), among others. Di Tillio, Kos,
and Messner (2016) show that the seller can increase his profit by using an ambiguous mechanism.
10Hurley and Shogren (1998a,b) and Denter, Morgan, and Sisak (2014) consider the contest framework.

Zhang and Zhou (2016) and Deng, Fang, Fu, and Wu (2021) adopt a Bayesian persuasion approach to
analyze the contest game.
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of winning as vi, the expected payoff of player i equals

ui(xA, xB) = pi(xA, xB)vi − xi, ∀i ∈ {A, B}.

The two players compete in a one-sided incomplete information contest: Player A’s val-

uation, vA, is commonly known, while player B’s valuation, vB, is his private information.

In particular, vB is distributed over Ω := {vHB , vLB}. Both the contest organizer and player A
share a common prior belief about vB ∈ Ω, which is captured by µ0 := Pr(vB = vHB ) ∈ (0, 1).

To avoid the corner solution, we assume that vLB ≥ vA/4 throughout the paper.

Unlike in the previous literature, in our model, the contest organizer can choose to use

an ambiguous communication device to induce effort from both contestants. An ambiguous

communication device Π consists of a finite set of signals/probabilistic devices, π1, ..., πK .11

Each probabilistic device πk consists of probability distributions that are contingent on

the state, i.e., πk = {πk(·|vB)}vB∈Ω. Specifically, for each vB ∈ Ω, probabilistic device πk
generates a distribution over a common message spaceM = {h, l}, i.e., πk(·|vB) ∈ ∆M . We

will show that focusing on M = {h, l} in Section 4.3 does not entail loss of generality, as the
optimal expected total effort remains the same for a finite message space M with |M | ≥ 2.

As will be discussed in detail in Section 3.1, an ambiguous device Π that consists of

{π1, ..., πK} generates a message m ∈ M . By observing m, player A updates his own belief
probability-by-probability, which leads to a set of posteriors. Each posterior distribution

over Ω := {vHB , vLB} is formed based on πk and message m using Bayes’rule. As the state is

binary, we introduce µkm := Pr(vB = vHB |πk,m) to represent the corresponding posterior and

{µ1
m, µ

2
m, ..., µ

K
m} to represent the aforementioned set of posteriors for simplicity.

We follow Epstein and Schneider (2007) and Pires (2002) to assume that player A (Re-

ceiver) forms posteriors using the full Bayesian updating rule and make decisions based on

the worst-case expected payoffby following Gilboa and Schmeidler (1989)’s maxmin expected

utility model.12

Assumption 1 Player A is an interim maxmin expected utility maximizer and updates his

11When K = 1, an ambiguous device boils down to a Bayesian/probabilistic device, which has been
analyzed by Zhang and Zhou (2016) in the contest game. For simplicity of notation, we will also use K to
denote the set of probabilistic devices.
12Many studies concerning mechanism design with ambiguity adopt the maxmin expected utility model

of Gilboa and Schmeidler (1989), e.g., Bose, Ozdenoren, and Pape (2006), Frankel (2014), Di Tillio, Kos,
and Messner (2016), Wolitzky (2016), Ayouni and Koessler (2017), Guo (2019), and Lopomo, Rigotti, and
Shannon (2021), among others.
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own belief probability-by-probability.

Without loss of generality, we can assume that player B is either an MMEU maximizer

or simply an expected utility (EU) maximizer, as player B knows his own valuation.13 The

timing of the game is as follows.

Time 1: The contest organizer chooses and precommits to an ambiguous communication

device Π that consists of {π1, ..., πK}.
Time 2: Player B observes his own valuation vB ∈ Ω = {vLB, vHB }, which is distributed

according to µ0.

Time 3: A message m ∈ M is generated according to Π and revealed to the public. By

observing the message m, player A forms a posterior set, i.e., {µ1
m, µ

2
m, ..., µ

K
m}.

Time 4: Both contestants exert efforts simultaneously. Payoffs are determined accord-

ingly.

We call stage 1 the ambiguous persuasion stage. The contest organizer’s problem is to

design an ambiguous information structure in stage 1, in order to maximize her ex ante

maxmin expected objective, which is the total effort from both contestants. We assume that

the organizer fully commits to the ambiguous device. Alternatively, we can assume that the

organizer commits to one probabilistic device that belongs to {π1, ..., πK} but neither player
knows which device has been chosen.

3 Analysis

In this section, we study the optimal ambiguous information structure for the environment

in Section 2. In Section 3.1, given an ambiguous device, by considering player A’s belief-

updating process, we identify the set of posteriors that results from a realized message. In

Section 3.2, we characterize the equilibrium and calculate the expected total effort when

player A holds multiple posteriors. In Section 3.3, we formulate the organizer’s optimization

problem. Combining the results, we discuss two cases according to the range of the prior

and fully solve for the optimal ambiguous device in Section 3.4.

13As Player A would follow Assumption 1 to evaluate his own payoff, there is no further layer of ambiguity
even we assume that player B is an MMEU maximizer.
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3.1 Belief Updating

Given Ω = {vHB , vLB} and the message space M = {h, l}, an ambiguous communication
deviceΠ consists of π1, ..., πK with each signal/probabilistic device πk = {πk(·|vLB), πk(·|vHB )},
where πk(·|vLB), πk(·|vHB ) ∈ ∆M . We denote the convex hull of {π1, ..., πK} by Π, as in the

literature on ambiguous persuasion and MMEU models.14 Formally,

Π = co((πk)K)

=

{
π ∈ ∆M s.t. π =

∑
k∈K

λ(k)πk for some λ ∈ ∆K

}
. (1)

Each π ∈ Π is a linear combination of π1, ..., πK . To interpret (1), imagine that the

organizer follows a distribution λ(·) ∈ ∆{1, ..., K} to draw a probabilistic device, which

will be used to generate a signal, while player A only knows that π1, ..., πK are used but

not λ(·). Note that π(·|vLB), π(·|vHB ) ∈ ∆M , as πk(·|vLB), πk(·|vHB ) ∈ ∆M , ∀k. For an

ambiguous communication device consisting of only two devices, π1 and π2, the resulting

Π = co(π1, π2) = {π ∈ ∆M |π = λπ1 + (1− λ)π2 for a λ ∈ [0, 1]}.
By receiving a messagem ∈ {h, l}, player A updates his belief probability-by-probability,

which leads to the following set of posterior that can be represented by

{µ1
m, µ

2
m, ..., µ

K
m}.

Each posterior, or µkm equivalently, is induced by πk and message m. Specifically,

µkm := Pr(vB = vHB |πk,m) =
µ0πk(m|vHB )

µ0πk(m|vHB ) + (1− µ0)πk(m|vLB)
,

and Pr(vB = vLB|πk,m) =
(1−µ0)πk(m|vLB)

µ0πk(m|vHB )+(1−µ0)πk(m|vLB)
.

For an easier exposition, given ambiguous deviceΠ = co((πk)K), we denote by {µ1
h, µ

2
h,..., µ

K
h }

(resp. {µ1
l , µ

2
l ,..., µ

K
l }) the set of posteriors induced by the message h (resp. l).

14Beauchêne, Li, and Li (2019) point out that the equilibrium is unaffected by the choice between (πk)K
and Π, as only the extreme points of the set will be minimizing probabilities for an MMEU agent. This
result remain valid in our context.
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3.2 Contest Game with Multiple Posteriors

We first consider the contest game with a single posterior and extend the analysis with

a set of posteriors. When player A holds a single posterior belief (µ, 1 − µ) over {vHB , vLB},
where µ = Pr(vB = vHB ), player A exerts effort

x∗A(µ) =

 µ√
vHB

+ 1−µ√
vLB

1
vA

+ µ
vHB

+ 1−µ
vLB

2

.

Player B makes his effort according to his valuation vB, and his effort strategy is

xB(vB, µ) =
√
vBx∗A(µ)− x∗A(µ), vB ∈ {vHB , vLB},

which is non-negative, as we assume vLB ≥ vA/4.

Therefore, the expected total effort that results from a single posterior equals

TE(µ) = Eµ [x∗A(µ) + xB(vB, µ)]

= Eµ

[√
vBx∗A(µ)

]

=

[
µ
√
vHB + (1− µ)

√
vLB

] [
µ√
vHB

+ 1−µ√
vLB

]
1
vA

+ µ
vHB

+ 1−µ
vLB

, (2)

as in Zhang and Zhou (2016).

We next turn to the contest game under ambiguity. To proceed, we first investigate how

player A, who holds a set of posteriors, makes an effort choice. Since player A’s preference

is represented by MMEU, he would evaluate his payoff under the worst-case scenario when

choosing a level of effort under ambiguity. In the following lemma, we solve the contest game

with a set of posteriors and derive the corresponding total effort function.

Lemma 1 Under Assumption 1, given the posterior set, i.e., {µ1, µ2,..., µK}, we have

TE({µ1, µ2, ..., µK}) = TE(max(µ1, µ2, ..., µK)),

where TE({µ1, µ2, ..., µK}) is the expected total effort that results from the the posterior set
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{µ1, µ2,..., µK} and TE(·) is given by (2).

Proof. By Assumption 1, player A is ambiguity averse with maxmin expected utility.

Given player B’s effort, player A’s problem is

max
xA∈[0,+∞)

min
µ∈{µ1,µ2,...,µK}

Eµ

[
xA

xA + xB(vB)
vA − xA

]

= max
xA∈[0,+∞)

Eµ∗

[
xA

xA + xB(vB)
vA − xA

]
,

where µ∗ = max(µ1, µ2, ..., µK). Specifically, µ∗ also represents the distribution that assigns

max(µ1, µ2, ..., µK) to vHB over {vHB , vLB}.
The reason why the last equality holds is that the more likely player B is to be a high-

type, the lower player A’s payoff would be. Therefore, player A would maximize his utility

according to µ∗, which is his worst-case belief among {µ1, µ2, ..., µK}.
The remaining calculation is analogous to the case wherein the posterior set is a singleton.

Specifically, player A’s equilibrium effort is

x∗A(µ∗) =

 µ∗√
vHB

+ 1−µ∗√
vLB

1
vA

+ µ∗

vHB
+ 1−µ∗

vLB

2

and player B’s equilibrium effort is

xB(vB, µ
∗) =

√
vBx∗A(µ∗)− x∗A(µ∗), for vB ∈ {vHB , vLB}.

The expected total effort therefore equals TE(µ∗), where µ∗ = max(µ1, µ2, ..., µK) and TE(·)
is given by (2).

Lemma 1 says that when player A holds a set of posteriors {µ1, µ2, ..., µK}, the expected
total effort is solely determined by the worst one that assigns max(µ1, µ2, ..., µK) to vHB . This

is because player A is an MMEU maximizer and exerts effort according to his worst-case

belief µ∗.
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3.3 The Organizer’s Problem

In this subsection, we will formally describe the organizer’s problem. The organizer

chooses an ambiguous communication device to maximize his ex ante maxmin payoff, which

is the expected total effort. For an ambiguous communication device that consists of {π1,

..., πK} and the message space M = {h, l}, each probabilistic device πk induces a posterior
beilef µkm upon receiving a message m ∈M . Let τ k ∈ ∆M denote the marginal distribution

over message space M . The distribution over posteriors, τ k, is Bayes plausible if it satisfies∑
m∈M τ k(m)µkm = µ0, i.e., τ k(h)µkh + τ k(l)µ

k
l = µ0, ∀k ∈ {1, ..., K}. Probabilistic devices

can be viewed as a special class of ambiguous devices by letting K = 1.

The organizer’s problem is to choose an ambiguous communication device Π to maximize

his ex ante maxmin objective in the following:

sup
Π

min
π∈Π

Eπ
[
TE({µ1

m, µ
2
m, ..., µ

K
m})
]

= sup
Π

min
π∈Π

∑
vB∈{vHB ,vLB}

Pr(vB)
∑

m∈{h,l}

π(m|vB)TE({µ1
m, µ

2
m, ..., µ

K
m})

 , (3)

where Pr(vHB ) = µ0 is the prior probability that player B is a vHB -type and Pr(vLB) = 1− µ0

is the prior probability of being a vLB-type.

Recall that an ambiguous device Π is a closed and convex set of multiple probabilistic

devices with common support, π1, ..., πK . More precisely, Π = co((πk)K) as in (1). The orga-

nizer has flexibility to design each probabilistic device, πk, and to decide how many devices

to be used, K, which determines Π uniquely.15 This ambiguous device is utilized to generate

a message. After the message is revealed, player A forms his posterior belief as described in

Section 3.1 and playersA andB compete as described in Section 3.2. GivenΠ, the organizer’s

worst-case payoffisminπ∈Π

∑
vB∈{vHB ,vLB}

[
Pr(vB)

∑
m∈{h,l} π(m|vB)TE({µ1

m, µ
2
m, ..., µ

K
m})
]
. The

organizer wishes to maximize his worst-case payoff by designing an ambiguous device Π.

By Kamenica and Gentzkow (2011) and Beauchêne, Li, and Li (2019), an ambiguous

device that consists of {π1, ..., πK} can be considered as a corresponding set of distributions
over posteriors, (τ k)k∈K . More precisely, we defineR as the set of distributions over posteriors

15Even the same Π can sometime be generated by different probabilistic devices (πk)K . Nevertheless, it
suffi ces to pin down the optimal Π.
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induced by these K probabilistic devices, i.e.,

R = {(τ k)k∈K : τ k ∈ ∆M s.t. τ k(·) = µ0πk(·|vHB ) + (1− µ0) πk(·|vLB)}.

The set of distributions above, R, is determined by the choice of {π1, ..., πK}. As the
choice of ambiguous device varies, we may obtain different sets of distributions over poste-

riors. We further define R as the collection containing all the sets of the distributions over

posteriors, where each distribution satisfies the Bayes-plausible condition.16 The organizer’s

problem of designing an ambiguous device is equivalent to choosing a set of distributions

that belongs to R. Furthermore, given a set of distributions over posteriors R ∈ R, the or-
ganizer’s worst-case payoff equals minτk∈REτk

[
TE({µ1

m, µ
2
m, ..., µ

K
m})
]
. We therefore rewrite

the organizer’s problem in (3) as follows:

sup
R∈R

min
τk∈R

Eτk
[
TE({µ1

m, µ
2
m, ..., µ

K
m})
]
,

which is equivalent to

sup
R∈R

min
τk∈R

[
τ k(h)TE(max{µ1

h, µ
2
h, ..., µ

K
h }) + τ k(l)TE(max{µ1

l , µ
2
l , ..., µ

K
l })
]

(4)

using Lemma 1.

3.4 Optimal Ambiguous Persuasion

In this subsection, we will study the organizer’s problem in (4) whose solution yields

the optimal ambiguous device. To accomplish this, we consider two cases according to the

range of the prior µ0 and derive the optimal ambiguous information devices for each case in

Propositions 1 and 3, respectively. We summarize the results in Theorem 1, which implies

that an effort-maxmizing organizer can strictly benefit from using ambiguous devices if and

only if µ0 is lower than a cutoff.

To begin our analysis, we introduce some useful properties and definitions. We first

introduce the following properties of TE(·), which prove useful when we explore the optimal
ambiguous device.

16Kamenica and Gentzkow (2011) show that a distribution of posteriors τ can be induced by a probabilistic
device if τ is Bayes plausible.
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Property 1 TE(·) in (2) satisfies the following properties:
(i) TE(·) is continuous within [0, 1];

(ii) TE(·) is concave (resp. convex) when vA <
√
vHB v

L
B (resp. vA >

√
vHB v

L
B) and is

linear when vA =
√
vHB v

L
B.

Property 1(i) can be verified directly using equation (2). Property 1(ii) has been shown by

Zhang and Zhou (2016).17 Since TE(·) given by (2) is continuous in [0, 1], by the Weierstrass

extreme value theorem, there exists an optimal µopt that maximizes TE(·) within [0, 1].

Formally, we introduce the following definition.

Definition 1 We define
µopt := arg max

µ∈[0,1]
TE(µ).

In other words, TE(µopt) ≥ TE(µ), ∀µ ∈ [0, 1]. We further prove the uniqueness and

fully characterize µopt in the following lemma.

Lemma 2 µopt is unique. In particular,

(i) if vA ≥
√
vHB v

L
B, µopt = 1;

(ii) if vA <
√
vHB v

L
B, µopt = min{µ̂, 1}, where µ̂ solves TE ′(µ) = 0.

Proof. The proof and the calculation details are relegated into the Appendix.

We next define a special class of ambiguous devices parameterized by µ, which proves

helpful in our follow-up analysis.

Definition 2 Define Π∗(µ) as the ambiguous device that consists of {π1, π2}, where

π1(m = h|vHB ) = 0, π1(m = h|vLB) =
µ− µ0

(1− µ0)µ
;

π2(m = h|vHB ) = 1, π2(m = h|vLB) =
µ0(1− µ)

(1− µ0)µ
.

17We also provide the calculation details when proving the uniqueness of µopt.
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Given the above ambiguous device Π∗(µ), a message could be interpreted differently using

π1 and π2, which generates ambiguity. In the following, we identify all the posterior sets

resulting from Π∗(µ) when the prior µ0 < µ.

Lemma 3 If µ0 < µ, the ambiguous device Π∗(µ) defined in Definition 2 always induces the

same set of posteriors {0, µ}, regardless of the realized message.

Proof. Given ambiguous device Π∗(µ), by receiving a message, h or l, player A forms a set

of posteriors, Ph(vHB ) = {0, µ} or Pl(vHB ) = {0, µ}, respectively. The result holds whenever
µ0 < µ.

From Lemma 3, if the prior µ0 < µopt := arg maxµ∈[0,1] TE(µ), as in Definition 2, we

could construct ambiguous device Π∗(µopt) = {π1, π2}, which induces the posterior sets {0,
µopt} and {µopt, 0}. ∀k ∈ {1, 2}, the resulting expected total effort equals

τ k(h)TE({0, µopt}) + τ k(l)TE({µopt, 0})

= TE(µopt),

which is the highest possible expected effort induced by an ambiguous device. We formally

establish the result in the following proposition, which is the first main result of the paper.

Proposition 1 If the prior µ0 < µopt, the greatest expected total effort induced by an infor-

mation device equals TE(µopt). In particular, when µ0 < µopt, TE(µopt) can be induced by

the ambiguous device Π∗(µopt).

Proof. To explain why TE(µopt) is the optimal effort, we first recall that TE(µopt) ≥
TE(µ), ∀µ ∈ [0, 1], which follows directly from Definition 1. Therefore, for any distribution

τ k ∈ ∆M , we have

TE(µopt) ≥ τ k(h)TE(max{µ1
h, µ

2
h, ..., µ

K
h }) + τ k(l)TE(max{µ1

l , µ
2
l , ..., µ

K
l }).

As a result,

TE(µopt) ≥ sup
R∈R

min
τk∈R

[
τ k(h)TE(max{µ1

h, µ
2
h, ..., µ

K
h }) + τ k(l)TE(max{µ1

l , µ
2
l , ..., µ

K
l })
]
,

which is given by (4).
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Moreover, TE(µopt) is achievable whenever µ0 < µopt. In particular, when µ0 < µopt,

TE(µopt) can be induced by the ambiguous device Π∗(µopt) = {π1, π2}, where

π1(m = h|vHB ) = 0, π1(m = h|vLB) =
µopt − µ0

(1− µ0)µopt
;

π2(m = h|vHB ) = 1, π2(m = h|vLB) =
µ0(1− µopt)
(1− µ0)µopt

.

By Lemma 3, Π∗(µopt) induces posterior sets {0, µopt} and {µopt, 0}. With Lemma 1, the
expected total effort equals TE(µopt).

Proposition 1 solves the optimal design of the ambiguous information structure when

µ0 < µopt. In this case, the greatest effort attains TE(µopt), which maximizes TE(·) in
(2). It is worth noting that the organizer cannot elicit strictly more effort than TE(µopt),

even when she is allowed to design player A’s belief directly. Moreover, the level of effort,

TE(µopt), can never be achieved by a probabilistic/Bayesian device in this case.

More precisely, it is infeasible to persuade player A to always take belief µopt via a

probabilistic/Bayesian device unless µ0 = µopt, as the Bayes plausible condition requires that

the expected posterior equals the prior. In contrast, when ambiguous information devices are

available, the organizer can introduce ambiguity, under which player A would pick the worst-

case posterior that does not necessarily satisfy the Bayes plausible condition. In particular,

the worst-case posterior always assigns higher probability to a high-type than the prior belief

does. As a result, an ambiguity-averse contestant may rationally “overestimate”the strength

of his opponent under ambiguity. To determine the optimal ambiguous device, it remains to

investigate “how much”ambiguity to induce and how many devices should be used.

From (4), it would be optimal to persuade player A to always take belief µopt whenever

possible. As shown in Proposition 1, this turns out to be feasible if the prior µ0 < µopt.

Moreover, two devices would be suffi cient to induce the desired ambiguity. To explain the

result, consider the optimal ambiguous device Π∗(µopt), each message m ∈ M = {h, l} has
two different interpretations by using π1 and π2, that is, player B is either a low-type for

sure or a high-type with probability µopt. As a maxmin expected utility maximizer, player

A would take the worst-case belief µopt when facing the two possibilities, 0 and µopt. When

player A acts as if his belief is µopt, both players make their own effort accordingly and the

total effort therefore equals TE(µopt).

Although we derive the optimal ambiguous device in Proposition 1, it remains to be
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investigated whether the identified optimal information structure is unique. We show that

there are uncountably many the optimal ambiguous devices. In the following proposition,

we first describe suffi cient and necessary conditions that the optimal ambiguous devices with

K ≥ 2 must satisfy and then characterize all optimal ambiguous devices with K = 2.

Proposition 2 If µ0 < µopt, there exist uncountably many ambiguous devices that attain

the greatest effort TE(µopt). More precisely,

(i) for any K ≥ 2, a device Π∗ is optimal if and only if the induced set of posterior

{µ1
m, µ

2
m, ..., µ

K
m} satisfies max{µ1

m, µ
2
m, ..., µ

K
m} = µopt for each realized message m ∈ {h, l};

(ii) for K = 2, the collection of optimal devices is {Π∗(µopt, µ′, µ′′)| µ′, µ′′ < µ0}. Given
µ′, µ′′ < µ0, Π∗(µopt, µ

′, µ′′) denotes the ambiguous device that consists of {π1, π2}, where

π1(m|vHB ) =
µ′
(
µopt − µ0

)
µ0(µopt − µ′)

, π1(m|vLB) =
(1− µ′)

(
µopt − µ0

)
(1− µ0) (µopt − µ′)

;

π2(m|vHB ) =
µopt (µ0 − µ′′)
µ0(µopt − µ′′)

, π2(m|vLB) =

(
1− µopt

)
(µ0 − µ′′)

(1− µ0) (µopt − µ′′)
,

for m ∈ {h, l}.

Proof. (i) ⇒: Consider an ambiguous device Π that consists of π1, ..., πK . If Π induces

the greatest effort TE(µopt), max{µ1
h, µ

2
h, ..., µ

K
h } = µopt and max{µ1

l , µ
2
l , ..., µ

K
l } = µopt must

hold by (4) and the definition of µopt.

⇐: If max{µ1
h, µ

2
h, ..., µ

K
h } = max{µ1

l , µ
2
l , ..., µ

K
l } = µopt, it follows from (4) that the

induced total effort equals TE(µopt).

(ii) For K = 2, consider an ambiguous device Π that consists of two probabilistic devices

{π1, π2}, denote the induced posteriors µm1 and µm2 when message is m ∈ {h, l}. An am-
biguous device is optimal if and only if the induced posteriors always satisfy max{µh1 , µh2} =

max{µl1, µl2} = µopt. In addition, recall that for each Bayesian device πi, the expected poste-

riors must equal prior µ0, which implies that if µ
h
i > µ0, µ

l
i < µ0 must hold. Since µopt > µ0,

if µhi = µopt (resp. µ
l
i = µopt), we must have µ

l
i < µ0 (resp. µ

h
i < µ0), ∀i ∈ {1, 2}. As a

result, there are only two possibilities: either µl1 = µh2 = µopt or µ
h
1 = µl2 = µopt. We can

then recover the corresponding π1 and π2. One can check that the constructed π1 induces

a posterior set {µ′, µopt} and π2 induces a posterior set {µ′′, µopt}, where µ′, µ′′ < µ0. The

details are relegated into the Appendix.
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With Proposition 2, we fully characterize the optimal ambiguous information devices

when µ0 < µopt. The reason why the optimal ambiguous device is not unique if µ0 < µopt is

that a maxmin contestant would make his effort decision according to his worst belief among

the posteriors, i.e., max{µ1
m, µ

2
m, ..., µ

K
m}. To induce the maximal effort, the key is to main-

tain max{µ1
m, µ

2
m, ..., µ

K
m} = µopt and other posteriors have no effect on the contestant’s effort

choice. WhenK goes beyond 2, one way to construct the desired information devices is to add

more probabilistic devices π3, ..., πK , in addition to π1 and π2 given by Proposition 2(i), when-

ever the induced posteriors are (weakly) less than µopt. Additionally, Π∗(µopt) in Proposition

1 can be viewed as a special case of Π∗(µopt, µ
′, µ′′), since Π∗(µopt) = Π∗(µopt, µ

′, µ′′)|µ′=µ′′=0

holds by definition. To better explain our optimality result, we provide an example in the

following.

Example 1: Consider a contest game in which vHB = 2, vLB = 0, and vA = 1. We plot

TE(·) given by (2) in Figure 1. In this case, µopt = 1, any prior µ0 satisfies the condition

that µ0 ≤ µopt. From Proposition 1, the optimal expected total effort that results from

ambiguous devices equals TE(µopt) = TE(1) ≈ 0.667, regardless of the prior. It can be

easily verified that TE(·) is convex; full disclosure is thus the optimal probabilistic device,
and the resulting expected total effort equals µ0TE(0) + (1 − µ0)TE(1) = (1 − µ0)TE(1),

which is less than TE(µopt).

Figure 1

In Example 1, when the two players are more or less evenly matched, it is always bene-

ficial to persuade player A to believe that his opponent is a high-type. However, when the
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difference between vA and vHB is suffi ciently large, this is not the case, i.e., it would discourage

player A if he believes that he would compete with a high-type. We provide an example to

illustrate the latter case. In the following example, we find that µopt could be strictly less

than 1. Consequently, there exists prior µ0 ∈ [0, 1] that violates the condition µ0 < µopt.

Example 2: In this example, we assume that vHB = 20, vLB = 1, and vA = 1. We plot

TE(·) given by (2) in Figure 2. From Proposition 1, when the prior µ0 = 0.3 is less than

µopt ≈ 0.71, the optimal expected total effort that results from ambiguous devices equals

TE(µopt) ≈ 1.173, which is greater than TE(µ0) ≈ 0.915, the optimal total effort induced

by probabilistic devices.

Figure 2: µ0 < µopt

However, when µ0 ≥ µopt, the analysis of Proposition 1 no longer applies. For complete-

ness, it remains to tackle the problem in (4) with µ0 ≥ µopt. To solve the case of µ0 > µopt, we

apply the concavification approach by Kamenica and Gentzkow (2011) and Beauchêne, Li,

and Li (2019). The latter characterizes the optimal value of ambiguous persuasion. To ap-

ply the concavification approach in our contest game, we first identify the greatest expected

total effort, which is given by the maximal projection of the concave closure of the total

effort function TE(·) in (2). Given the optimal effort, we construct a Bayesian/probabilistic
device to achieve the optimum, which depends on the convexity of TE(·). Recall that TE(·)
is either convex or concave by Property 1 (ii).

Proposition 3 If the prior µ0 ≥ µopt, the greatest expected total effort induced by an infor-
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mation device equals TE(µ0), which can be induced by no disclosure.

Sketch of proof. In this case, we apply the concavification approach to solve for the
maxmin effort-maximizing ambiguous device, which takes three steps. In the first step, we

derive the maximal projection of the concave closure of the total effort function TE(·), in
order to derive the greatest expected total effort that results from the optimal ambiguous

persuasion. In the second step, we find that the optimal effort, which is identified in the first

step, can be attained by a deterministic device. In the third step, we note that µ0 > µopt
never occurs when vA >

√
vHB v

L
B. For two remaining cases vA =

√
vHB v

L
B and vA <

√
vHB v

L
B,

no disclosure is optimal. The details are relegated into the Appendix. �
Proposition 3 shows that introducing ambiguity does not help in increasing the total

effort, if the prior µ0 ≥ µopt. In particular, the condition of µ0 > µopt indicates that player

A would be discouraged by facing an overly strong opponent, i.e., player B with a large vHB .

In this case, the total effort would increase if player A “underestimates”the strength of his

opponent, as TE(·) decreases with µ ∈ (µopt, 1] (see also Figure 2). However, it is impossible

to persuade player A to “underestimate”his opponent on average, even via an ambiguous

information structure.

More precisely, consider an arbitrary ambiguous device that consists of probabilistic de-

vices, π1, ..., πK . For each πk, it follows from the Bayes-plausible condition that τ k(h)µkh +

τ k(l)µ
k
l = µ0. When m = l, player A follows the full updating rule to form the posterior set

{µ1
l , µ

2
l , ..., µ

K
l } andmakes his own effort according to the worst-case beliefmax{µ1

l , µ
2
l , ..., µ

K
l }.

A useful observation is that ifmax{µ1
l , µ

2
l , ..., µ

K
l } < µ0, µ

k
l < µ0 must hold for each k. By the

Bayes-plausible condition, µkh > µ0 must hold for each k; as a result, max{µ1
h, µ

2
h, ..., µ

K
h } >

µ0. This implies that when m = h, player A’s worst-case belief is max{µ1
h, µ

2
h, ..., µ

K
h }, which

must be strictly greater than µ0. In other words, player A would not systematically “un-

derestimate”his opponent, due to the Bayes-plausible condition. In fact, under ambiguity,

player A with maxmin perference always behaves as if he “overestimates”the strength of his

opponent, which would lower the total expected effort if µ0 > µopt. As a result, an ambiguous

device does no strictly better than any Bayesian device in persuading player A to “under-

estimate”his opponent. Moreover, no disclosure is the optimal deterministic/probabilistic

device. We therefore conclude that if µ0 > µopt, a contest organizer cannot improve the

expected total effort by using an ambiguous device over a Bayesian one (or no disclosure).

Combining Propositions 1 and 3, we characterize the optimal effort TEAP (µ0) and the

corresponding information policy in the following.
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Theorem 1 Depending on the prior µ0, it is optimal to either induce ambiguity or simply

stay silent. More precisely, we have

(i) If µ0 < µopt, the optimal effort TEAP (µ0) = TE(µopt), which can be induced by the

ambiguous device Π∗(µopt); (ii) if µ0 ≥ µopt, TEAP (µ0) = TE(µ0), which can be induced by

no disclosure.

To improve the total effort, the organizer wants to persuade player A to “overestimate”

(resp. “underestimate”) the strength of his opponent when µ0 < µopt (resp. µ0 > µopt). Gen-

erating ambiguous information leads to overestimation while underestimation never occurs,

since player A is ambiguity-averse with maxmin preference. Hence, an effort-maximizing

organizer can strictly improve the effort by exploiting the ambiguity-aversion of player A if

and only if µ0 < µopt. In that case, it is essential for such an organizer to induce ambiguity

by using at least two Bayesian devices.

Specifically, it is optimal to persuade player A to act as if his opponent is a vH-type with

probability µopt. Any other belief would cause a fall in the total effort, since µopt uniquely

maximizes the total effort function. Intuitively, the belief µopt balances and thus intensifies

the competition between the two players. However, it is feasible to induce player to take

belief µopt if and only if µ0 ≤ µopt. Recall that by Property 1 and Lemma 2, if vA <
√
vHB v

L
B,

TE(·) is concave and µopt ∈ (0, 1], which implies that inducing proper “overestimation” is

optimal when player A is not that strong; if vA >
√
vHB v

L
B, TE(·) is convex and increasing,

µopt = 1, in this case, the designer should induce “overestimation”as much as possible as

player A is strong.

We next compare ambiguous devices and probabilistic devices in terms of the resulting

optimal total efforts, TEAP (·) and TEBP (·) in the following corollary.

Corollary 1 The organizer strictly benefits from using ambiguous devices than using prob-

abilistic device, i.e., TEAP (µ0) > TEBP (µ0) if and only if µ0 < µopt.

Proof. By Theorem 1(ii), if µ0 ≥ µopt, TEAP (µ0) = TE(µ0), which means that no

disclosure is the optimal ambiguous mechanism. It then remains to consider the case µ0 <

µopt. On one hand, Theorem 1(i) implies that TEAP (µ0) = TE(µopt) if µ0 < µopt. On

the other hand, Zhang and Zhou (2016) shows that with a binary distribution, the optimal

probabilistic device is either full disclosure or full concealment, which implies that TEBP (µ0)

equals either µ0TE(1)+(1−µ0)TE(0) or TE(µ0). By Lemma 2, µopt is unique, and therefore
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for any µ ∈ [0, 1], TE(µ) is strictly less than TE(µopt), unless µ = µopt. Corollary 1 thus

follows.

Corollary 1 provides the suffi cient and necessary condition under which the optimal am-

biguous device strictly outperforms the optimal probabilistic device. Note that TEAP (µ0) ≥
TEBP (µ0) always holds.

Remark 1 TEBP (·) is obtained when both the players and the organizer are expected utility
(EU) maximizers, while TEAP (·) is obtained when both the players and the organizer are
maxmin expected utility (MMEU) maximizers.

It is worth to noting that if a maxmin expected utility (MMEU) organizer can strictly

benefit from using ambiguous persuasion, a expected utility (EU) organizer can also do,

but not vice versa. In the following, we provide an example to illustrute the comparison of

TEAP (·) and TEBP (·).
Example 2 (Continued): We maintain the assumptions of vHB = 20, vLB = 1, and

vA = 1. In this example, TE(·) is concave, which can be easily verified using (2) (see
also Figure 2). For a better illustration, we plot the optimal effort TEAP (·) induced by an
ambiguous device and the optimal effort TEBP (·) induced by a probabilistic device in the
following figure. From Theorem 1, when µ0 ≤ µopt, the optimal effort induced by the optimal

ambiguous device TEAP (µ0) = TE(µopt), which is greater than TEBP (µ0) = TE(µ0); when

µ0 > µopt, TEAP (µ0) coincides with TEBP (µ0), which equals TE(µ0).

Figure 3: Comparison of TEAP (·) and TEBP (·).
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4 Discussions

In this Section, we advance our analysis by examining the following aspects. Specifically,

we study the impact of µ0, vA, v
H
B and v

L
B on the total effort in Section 4.1. We show that it

is without loss of generality to focus on two devices, i.e., K = 2 in Section 4.2 and to focus

on the message space M = {h, l} in Section 4.3, respectively. In Section 4.4, we provide a
short discussion on the applicability of our analysis to other settings.

4.1 Comparative Statics

By Theorem 1, TEAP (µ0) = TE(µopt) when µ0 < µopt and TEAP (µ0) = TE(µ0) when

µ0 ≥ µopt. As the cutoff µopt plays a crucial role, we first consider how the cutoff varies with

vA in the following.

Proposition 4 µopt increases with vA.

Proof. We rely on the result of Milgrom and Shannon (1994) to show the lemma. To do so,

we prove that TE(µ, vA) = K(µ, vA)(µ
√
vHB + (1− µ)

√
vLB) obeys single-crossing property,

where K(µ, vA) =

µ√
vH
B

+ 1−µ√
vL
B

1
vA

+ µ

vH
B

+ 1−µ
vL
B

. The details are relegated into the appendix.

The result says that in order to induce the greaterst effort, the optimal persuasion requires

to persuade player A to believe player B is more likely a strong one as player A’s value grows.

We next investigate how total effort varies with µ0, vA, v
H
B and vLB, respectively. Since

state is binary, the corresponding prior distribution (µ0, 1 − µ0) on {vHB , vLB} exhibits first-
order stochastic dominance as the prior µ0 increases, i.e., (µ′0, 1−µ′0)

FOSD
� (µ′′0, 1−µ′′0), when

µ′0 > µ′′0.

Proposition 5 (i) As µ0 increases from 0 to 1, the optimal effort either stays constant or

first remains constant then falls.

(ii) The total effort increases with vA.

(iii) The total effort increases with vH .

(iv) The total effort changes non-monotonically with vL.

Proof. (i) Consider two cases: µopt = 1 and µopt < 1, the proposition follows directly from

Theorem 1. For (ii)-(iii), we prove the results by considering the corresponding derivative. As
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for (iv), we consider an example by letting vHB = 15, vA = 2, µ = 0.9, and the resulting total

effort is non-monotone in vLB, since
dTE
dvLB
|vLB=0.6 ≈ 0.182 14 > 0, dTE

dvLB
|vLB=2 ≈ −1. 368 5×10−2 <

0, and dTE
dvLB
|vLB=14 ≈ 1. 195 2× 10−3 > 0. The details are relegated into the appendix.

By letting vHB = 15; vA = 2; µ = 0.9, we plot the total effort as a function of vLB as

follows.

Example: Proposition 5 (iv)

For Proposition 5(i), when µ0 is in a low range (i.e., µ0 < µopt), the organizer can always

persuade the uninformed player to take belief µopt by disclosing ambiguous information so

that the optimal effort stays constant in that range; when µ0 is in a high range (i.e., µ0 ≥
µopt), the uninformed player initially believes that his opponent is more likely a high-type,

which discourges the uninformed and causes a fall in the total effort. Moreover, Theorem

1(ii) says that no information can induce the maximal total effort in that case.

To explain Proposition 5(ii), note that player A with a higher value vA would spend

larger effort, which would further sitimulate his opponent when player B is not overly weak.18

Regarding Proposition 5(iii) and (iv), it states that a higher vH would always increase the

total effort, while a higher vL would not. As vL (or vH) increases, player B would certainly

raise his own effort, which would initially stimulate but later discourage player A as player

B becomes overly stronger. That is why the total effort changes non-monotonically with vL.

It is worth noting that a vH-type player would spend more effort than a vL-type player, since

18Recall that we assume that vLB ≥ vA/4 throughout the paper.
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the marginal effort cost of a vH-type is less costly. This helps to explain why the resulting

total effort always rises as vH increases.

4.2 The Suffi ciency of K = 2

When analyzing ambiguous devices, our proofs of Propositions 1 and 3 do not depend

on the number of the probabilistic devices used, K. It in fact suffi ces to focus on K = 2,

which has been shown in Proposition 1 of Beauchêne, Li, and Li (2019). In the following,

we provide a more intuitive proof in our context.

Proposition 6 Focusing on the ambiguous devices that consist of two probabilistic devices,
i.e., K = 2, does not involve a loss of generality.

Suppose that Π1, which consists of {π1, ..., πK}, is the maxmin effort-maximizing ambigu-
ous device, which induces a set of distributions over posteriors, (τ k)k∈K . Each distribution

over posteriors, τ k, must be Bayes plausible, i.e., τ k(h)µkh + τ k(l)µ
k
l = µ0. The resulting

maxmin expected total effort equals

min
k∈{1,...,K}

[
τ k(h)TE(max{µ1

h, µ
2
h, ..., µ

K
h }) + τ k(l)TE(max{µ1

l , µ
2
l , ..., µ

K
l })
]
. (5)

We now prove that the optimal value above can be induced by an ambiguous device

with K = 2. First, there must exist µk(h)
h and µk(l)

l such that µk(h)
h = max{µ1

h, µ
2
h, ..., µ

K
h })

and µk(l)
l = max{µ1

l , µ
2
l , ..., µ

K
l }. We next consider the ambiguous device Π2 that consists of

{πk(h), πk(l)}, which leads to a maxmin expected total effort equal to

min
k∈{k(h),k(l)}

[
τ k(h)TE(max{µk(h)

h , µ
k(l)
h }) + τ k(l)TE(max{µk(h)

l , µ
k(l)
l })

]
. (6)

We now prove that the total effort in (5) must coincide with the total effort in (6). On one

hand, since Π1 is the maxmin effort-maximizing ambiguous device, (5) must be greater than

(6). On the other hand, it follows from the construction that TE(max{µ1
h, µ

2
h, ..., µ

K
h }) =

TE(max{µk(h)
h , µ

k(l)
h }) and TE(max{µ1

l , µ
2
l , ..., µ

K
l }) = TE(max{µk(h)

l , µ
k(l)
l }); as a result, (5)

must be less than (6), since {k(h), k(l)} ⊂ {1, ..., K}.
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4.3 The Suffi ciency of M = {h, l}

Consider a finite message space M with |M | ≥ 2, upon receiving a message m ∈ M ,

player A updates his belief probability-by-probability, which leads to the following set of

posteriors:

{µ1
m, µ

2
m, ..., µ

K
m}.

We solve the contest game with multiple posteriors as in the Section 3.2 and obtain

Lemma 1. Analogous to (4), the organizer’s problem can be rewritten as

sup
R∈R

min
τk∈R

[∑
m∈M

τ k(m)TE(max{µ1
m, µ

2
m, ..., µ

K
m})
]
. (7)

We show that Propositions 1 and 3 remain valid in the following.

Proposition 7 Focusing on M = {h, l} does not involve loss of generality. In particular,
Propositions 1 and 3 hold for a finite message space M with |M | ≥ 2.

Proof.

(i) Recall that TE(µopt) ≥ TE(µ), ∀µ ∈ [0, 1], which follows directly from Definition 1.

Therefore, for any distribution τ k ∈ ∆M , we have

TE(µopt) ≥
∑
m∈M

τ k(m)TE(max{µ1
m, µ

2
m, ..., µ

K
m}).

As a result,

TE(µopt) ≥ sup
R∈R

min
τk∈R

[∑
m∈M

τ k(m)TE(max{µ1
m, µ

2
m, ..., µ

K
m})
]
,

which is given by (4).

Moreover, when µ0 ≤ µopt, TE(µopt) can be achieved by the information policies described

in Proposition 1. Therefore, the expected total effort equals TE(µopt).

(ii) In the proof of Proposition 3, we derive the maximal projection of the concave closure

of the total effort function, TE(µ0), which yields the greatest expected total effort that

results from the optimal ambiguous persuasion. It thus suffi ces to show that TE(µ0) remains
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the same for the messages space M with |M | ≥ 2. By checking the Step 1 in the proof

of Proposition 3, TE(µ0) remains max(µ2,...,µK)∈(∆Ω)K−1 cavTE(max{µ0, µ
2, ..., µK}), which

gives the maximum total effort that results from the optimal ambiguous persuasion.

4.4 A Short Discussion

In this paper, we adopt the two-state setting of one-sided incomplete-information lottery

contest. In this subsection, we discuss the extent to which we expect our results to apply

or not apply in a more general contest setting, including two-state settings but with dif-

ferent contest technologies, settings with three or more states, and contests with two-sided

information asymmetry.

In the current setting, our main result consists two parts: first, the optimal effort could

reach the maximal value TE(µopt) when the initial prior is in the low range (µ0 < µopt);

second, no disclosure is optimal when the prior is in the high range (µ0 ≥ µopt). We conjecture

that the main insight of the first part could be extended to other two-player two-state contest

settings, provided that the total effort function TE can be characterized. If the total effort

function is continuous over the belief within [0, 1], one could define µopt as in Definition

1 and construct an information device as in Definition 2, which always induces a maxmin

player to take the desired belief µopt.
19 While for the second part, no disclosure could

not be the optimal in general, even within Bayesian devices, for example, Chen, Kuang,

and Zheng (2019) consider a two-player all-pay auction contest with one-sided asymmetric

information. In this case, one could apply the concavification approach by Kamenica and

Gentzkow (2011) and Beauchêne, Li, and Li (2019) to characterize the optimal value of

ambiguous persuasion and construct a Bayesian/probabilistic device to achieve the optimum.

When applying the aforementioned approach, several diffi culties may arise, including the

explicit characterization of the effort strategies involved, the concavification of the total

effort function, and the construction of the optimal device.20

The same diffi culties carry on to settings with three or more states. More specifically,

there is a lack of a closed-form characterization of optimal Bayesian persuasion, although

Zhang and Zhou (2016) provide an algorithm to search for optimal Bayesian persuasion with

at least three states in this contest game, an explicit formula is still unavailable. Moreover,

19If µopt is not unique, it is without loss to take the maximum.
20To identify the greatest expected total effort, the concavification approach requires to compute the

maximal projection of the concave closure of the total effort function.
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it is not straightforward to apply concavification procedure when going beyond binary cases,

since now the expected total function must be multi-dimensional. In addition, with this

binary-state assumption, all prior distributions are completely ordered using the first-order

stochastic dominance. However, not all prior distributions are ordered for three or more

states, which further complicate the problem.

It is also reasonable to consider a contest with two-sided information asymmetry wherein

both contestants are uninformed of each other’s types. As Zhang and Zhou (2016) point out

“It is natural to ask what occurs if both contestants possess private information. Several

technical challenges emerge accordingly, [...] a characterization of the equilibrium is usually

not obtainable.”Due to the lack of a closed-form solution, one has to develop an approach

to circumvent this diffi culty to derive the optimal ambiguous signals.

5 Concluding Remarks

We reinvestigate the optimal design of an information structure when the organizer is al-

lowed to disclose ambiguous information in a two-player contest. One contestant’s valuation

is publicly known, while the other’s valuation is his private type, which follows a binary distri-

bution. We characterize the optimal information structure through an ambiguous persuasion

approach. The effort-maximizing disclosure policy depends on the prior. More precisely, it

is optimal to either induce maximal ambiguity or fully conceal information. By introducing

ambiguity, a contest organizer can persuade the uninformed contestant to “overestimate”the

strength of his opponent. In contrast, such a contestant never “underestimates”his oppo-

nent on average under ambiguity. In the current setting, we show that an effort-maximizing

organizer can benefit from generating ambiguous information in many circumstances. There

still many other settings worth investigating. We leave these directions to future work.
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Appendix

This appendix covers the proofs of Lemma 2, Propositions 2, 3, 4, and 5.

Proof of Lemma 2

Recall that TE(µ) = K(µ)
(
µ
√
vHB + (1− µ)

√
vLB

)
, where K(µ) =

µ√
vH
B

+ 1−µ√
vL
B

1
vA

+ µ

vH
B

+ 1−µ
vL
B

. It fol-

lows from direct calculation that

K ′(µ) =

(
1√
vHB
− 1√

vLB

) 1
vA
− 1√

vHB v
L
B(

1
vA

+ µ
vHB

+ 1−µ
vLB

)2


< 0, when vA <

√
vHB v

L
B;

= 0, when vA =
√
vHB v

L
B;

> 0, when vA >
√
vHB v

L
B.

and

K ′′(µ) = −2

(
1√
vHB
− 1√

vLB

)2 1
vA
− 1√

vHB v
L
B(

1
vA

+ µ
vHB

+ 1−µ
vLB

)3


< 0, when vA <

√
vHB v

L
B;

= 0, when vA =
√
vHB v

L
B;

> 0, when vA >
√
vHB v

L
B.

Hence, we have

TE ′(µ) = K ′(µ)

(
µ
√
vHB + (1− µ)

√
vLB

)
+K(µ)

(√
vHB −

√
vLB

)
> 0, when vA ≥

√
vHB v

L
B.

and

TE ′′(µ) = K ′′(µ)

(
µ
√
vHB + (1− µ)

√
vLB

)
+ 2K ′(µ)

(√
vHB −

√
vLB

)


< 0, when vA <
√
vHB v

L
B;

= 0, when vA =
√
vHB v

L
B;

> 0, when vA >
√
vHB v

L
B.

Therefore, if vA ≥
√
vHB v

L
B, TE

′(µ) > 0, which implies that µopt = 1; if vA <
√
vHB v

L
B,

TE ′′(µ) < 0, which implies the uniqueness of µopt.
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To solve for µopt explicitly, recall that µopt = arg max
µ∈[0,1]

TE(µ). We next apply Lagrange

method with Karush-Kuhn-Tucker conditions. µopt maximizes L(µ) = TE(µ)+λµ+γ(1−µ)

and thus satisfies

TE ′(µ) + λ− γ = 0;

λµ = 0;

γ(1− µ) = 0.

In the following, we prove that µopt = 0 never occurs by contradiction. Suppose that

µopt = 0, which means that γ = 0 and TE ′(µ)|µ=0 = −λ < 0. By direct substitution, we

have

TE ′(µ)|µ=0 =

(
1√
vHB
− 1√

vLB

) 1
vA
− 1√

vHB v
L
B(

1
vA

+ 1√
vLB

)2

√
vLB +

1√
vLB

1
vA

+ 1
vLB

(√
vHB −

√
vLB

)
< 0,

which is equivalent to

√
vHB −

√
vLB

1
vA

+ 1√
vLB

 1√
vHB

1√
vHB v

L
B

− 1
vA

1
vA

+ 1
vLB

+
1√
vLB

 < 0,

i.e., (√
vLB
vLB

1

vLB
+

1√
vHB v

L
B

)
vA < 1−

√
vHB
vLB
.

which contradicts, since
(√

vLB
vLB

1
vLB

+ 1√
vHB v

L
B

)
vA > 0 and 1−

√
vHB
vLB

< 0.

As a result, µopt 6= 0, which implies that λ = 0 and TE ′(µ)|µ=µopt = γ ≥ 0. If γ > 0,

µopt = 1. If γ = 0, µopt must solve TE
′(µ) = 0.

We therefore conclude that if vA <
√
vHB v

L
B, µopt =

{
µ̂, if µ̂ < 1

1, if µ̂ ≥ 1
, where µ̂ solves

TE ′(µ) = 0. As a by-product, TE ′(µ)|µ=µopt ≥ 0. Therefore, if vA <
√
vHB v

L
B, µopt =

min{µ̂, 1}, where TE ′(µ̂) = 0.
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Proof of Proposition 2

Our goal is to construct all optimal ambiguous devices with K = 2. Consider an ambigu-

ous device Π that consists of two probabilistic devices {π1, π2}, denote the induced posteriors
µm1 and µm2 when message is m ∈ {h, l}. An ambiguous device is optimal if and only if the
maximal posteriors always coinciding µopt, which means max{µh1 , µh2} = max{µl1, µl2} = µopt.

As a result, there are only two possibilities: either µl1 = µh2 = µopt or µ
h
1 = µl2 = µopt. In

addition, recall that for each Bayesian device πi, the expected posteriors must equal prior

µ0, which implies that if µ
h
i > µ0, µ

l
i < µ0 must hold. Since µopt > µ0, if µ

h
i = µopt (resp.

µli = µopt), we must have µ
l
i < µ0 (resp. µ

h
i < µ0), ∀i ∈ {1, 2}.

Consider that (µh1 , µ
l
1) = (µ′, µopt) and (µh2 , µ

l
2) = (µopt, µ

′′), where µ′, µ′′ < µ0. We next

show how to recover the corresponding π1 and π2. It follows from Bayes’rule that

µh1 =
µ0π1(h|vHB )

µ0π1(h|vHB ) + (1− µ0)π1(h|vLB)
= µ′,

µl1 =
µ0π1(l|vHB )

µ0π1(l|vHB ) + (1− µ0)π1(l|vLB)
=

µ0

[
1− π1(h|vHB )

]
µ0 [1− π1(h|vHB )] + (1− µ0) [1− π1(h|vLB)]

= µopt;

µh2 =
µ0π2(h|vHB )

µ0π2(h|vHB ) + (1− µ0)π2(h|vLB)
= µopt,

µl2 =
µ0π2(l|vHB )

µ0π2(l|vHB ) + (1− µ0)π2(l|vLB)
=

µ0

[
1− π2(h|vHB )

]
µ0 [1− π2(h|vHB )] + (1− µ0) [1− π2(h|vLB)]

= µ′′.

Solving the above system yields

π1(h|vHB ) =
µ′
(
µopt − µ0

)
µ0(µopt − µ′)

, π1(h|vLB) =
(1− µ′)

(
µopt − µ0

)
(1− µ0) (µopt − µ′)

;

π2(h|vHB ) =
µopt (µ0 − µ′′)
µ0(µopt − µ′′)

, π2(h|vLB) =

(
1− µopt

)
(µ0 − µ′′)

(1− µ0) (µopt − µ′′)
.

Analoguously, if (µh1 , µ
l
1) = (µopt, µ

′) and (µh2 , µ
l
2) = (µ′′, µopt), one could apply the same

procedure to derive π1 and π2, which are given by

π1(l|vHB ) =
µ′
(
µopt − µ0

)
µ0(µopt − µ′)

, π1(l|vLB) =
(1− µ′)

(
µopt − µ0

)
(1− µ0) (µopt − µ′)

;
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π2(l|vHB ) =
µopt (µ0 − µ′′)
µ0(µopt − µ′′)

, π2(l|vLB) =

(
1− µopt

)
(µ0 − µ′′)

(1− µ0) (µopt − µ′′)
.

One could easily check the optimality of the constructed devices. The posteriors induced

by each message satisfy max{µh1 , µh2} = max{µl1, µl2} = µopt. As a result, player A would

take belief µopt, regardless of the realized message. The optimality of the constructed devices

thus follows.

Proof of Proposition 3

Recall that the organizer’s objective is to maximize his ex ante maxmin payoff, which is

the expected total effort. When µ0 = µopt, TE(µopt) can be induced by no disclosure; When

µ0 > µopt, we take three steps to solve the problem in (4) as follows.

Step 1: In order to derive the greatest maxmin expected total effort, we apply the
technique developed by Beauchêne, Li, and Li (2019) in the following. Given that player A

holds the posterior beliefs {µ1, µ2, ..., µK}, we will first solve for the concave closure of the
subgraph of TE, i.e., cavTE(µ1, µ2, ..., µK), and subsequently derive its maximal projection

TE(µ0), which gives the optimal total effort.

It follows from Lemma 1 that the total effort TE(µ1, µ2, ..., µK) = TE(max{µ1, µ2, ..., µK}).
The subgraph of TE is {(µ1, µ2, ..., µK , z) s.t. TE(max{µ1, µ2, ..., µK}) ≥ z}. We denote its
concave closure as cavTE(µ1, µ2, ..., µK) := sup{z|(µ1, µ2, ..., µK , z) ∈ co(Subgrah(TE))}.
Note that cavTE(µ1, µ2, ..., µK) = cavTE(max{µ1, µ2, ..., µK}).
Therefore, the maximal projection of cavTE(max{µ1, µ2, ..., µK}) is

TE(µ1) = max
(µ2,...,µK)∈(∆Ω)K−1

cavTE(max{µ1, µ2, ..., µK}).

Beauchêne, Li, and Li (2019) show that TE(µ0) is the optimal value that results from

the optimal ambiguous persuasion. Zhang and Zhou (2016) study the optimal probabilistic

device, i.e.,K = 1. They find that TE(·) is either concave or convex, and therefore cavTE(µ)

equals either TE(µ) or µTE(1)+(1−µ)TE(0). To investigate ambiguous devices withK ≥ 2,

we discuss three cases according to the convexity of TE(·).
(i) When TE(·) is convex, the concave closure of TE(max{µ1, µ2, ..., µK}) equals

cavTE(max{µ1, µ2, ..., µK})
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= cavTE(max{µ1,max{µ2, ..., µK}})

= max{µ1,max{µ2, ..., µK}}TE(1) + (1−max{µ1,max{µ2, ..., µK}})TE(0),

since cavTE(µ) = µTE(1) + (1− µ)TE(0), which follows from the convexity of TE(·).
Beauchêne, Li, and Li (2019) prove that the optimal value equals TE(µ0). In our model,

TE(µ0)

= max
(µ2,...,µK)∈(∆Ω)K−1

cavTE(max{µ0, µ
2, ..., µK})

= max
(µ2,...,µK)∈(∆Ω)K−1

max{µ0,max{µ2, ..., µK}}TE(1) + (1−max{µ0,max{µ2, ..., µK}})TE(0)

= µ0TE(1) + (1− µ0)TE(0).

The last equality holds since µopt = 0, i.e., TE(0) > TE(µ), ∀µ ∈ (0, 1]. To see this,

when TE(·) is convex, either µopt = 0 or µopt = 1. Since µ0 > µopt, we must have µopt = 0.21

(ii) When TE(·) is linear, TE(·) is either (weakly) increasing or (weakly) decreasing, and
µ0 > µopt implies that TE(·) must be (weakly) decreasing.22 As a result,

TE(µ0)

= max
(µ2,...,µK)∈(∆Ω)K−1

cavTE(max{µ0, µ
2, ..., µK})

= max
(µ2,...,µK)∈(∆Ω)K−1

TE(max{µ0, µ
2, ..., µK})

= TE(µ0),

since TE(·) is a weakly decreasing linear function. In particular, TE(µ0) = µ0TE(1) + (1−
µ0)TE(0).

(iii) When TE(·) is concave, the concave closure of TE(max{µ1, µ2, ..., µK}) equals

cavTE(max{µ1, µ2, ..., µK}) = TE(max{µ1, µ2, ..., µK}),
21When µopt = 1, µ0 ≤ µopt, we go back to Proposition 1.
22If TE(·) is a constant, µopt can be any value between 0 and 1 and µ0 > µopt is impossible; if TE(·) is

an increasing function, µopt = 1 and µ0 > µopt never occurs.

33



using cavTE(µ) = TE(µ). Therefore, the maximal projection of cavTE(max{µ1, µ2, ..., µK})
is

TE(µ0)

= max
(µ2,...,µK)∈(∆Ω)K−1

cavTE(max{µ0, µ
2, ..., µK})

= max
(µ2,...,µK)∈(∆Ω)K−1

TE(max{µ0, µ
2, ..., µK})

= TE(µ0),

as the prior µ0 > µopt.

Step 2: We construct probabilistic devices to induce the optimal effort identified in Step
1 as follows.

(i) When TE(·) is convex, full disclosure could induce the optimal expected total effort
µ0TE(1) + (1− µ0)TE(0).

(ii) When TE(·) is linear, the optimal effort, TE(µ0) = µ0TE(1) + (1 − µ0)TE(0), can

be induced by any probabilistic device.

(iii) When TE(·) is concave, the optimal effort, TE(µopt) = TE(µ0), can be induced by

no disclosure.

Step 3: By Lemma 2, when vA >
√
vHB v

L
B, µopt = 1, which implies that µ0 > µopt never

occurs. It thus suffi ces to consider two remaining cases vA =
√
vHB v

L
B and vA <

√
vHB v

L
B.

Note that vA = (resp. <)
√
vHB v

L
B if and only if TE(·) is linear (resp. strictly concave).

Combining the results, we conclude that if µ0 = µopt, TE(µopt) can be induced by no

disclosure; if µ0 > µopt, the following results hold.

(i) When vA =
√
vHB v

L
B, the optimal total effort equals TE(µ0) = (1 − µ0)TE(0) +

µ0TE(1), which can be induced by full/no disclosure or any other Bayesian device;

(ii) When vA <
√
vHB v

L
B, the optimal total effort equals TE(µ0), which can be induced

by no disclosure. Proposition 3 thus follows.

Proof of Proposition 4

By Lemma 2, it suffi ces to show that µ̂ increases with vA, where µ̂ solves TE ′(µ) = 0.

By Milgrom and Shannon, it is equivalent to prove that TE(µ, vA) = K(µ, vA)(µ
√
vHB +
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(1− µ)
√
vLB) obeys single-crossing property, where K(µ, vA) =

µ√
vH
B

+ 1−µ√
vL
B

1
vA

+ µ

vH
B

+ 1−µ
vL
B

. For µ′′ > µ′,

let δ(vA) = TE(µ′′, vA) − TE(µ′, vA). To verify the single-crossing property, we need to

show that δ(v′A) ≥ 0 implies that δ(v′′A) ≥ 0. More detailedly, δ(v′A) = K(µ′′, v′A)(µ′′
√
vHB +

(1− µ′′)
√
vLB)−K(µ′, v′A)(µ′

√
vHB+(1− µ′)

√
vLB) and δ(v′′A) = K(µ′′, v′′A)(µ′′

√
vHB+(1− µ′′)

√
vLB)−

K(µ′, v′′A)(µ′
√
vHB +(1− µ′)

√
vLB). Note that δ(v′′A) ≥ 0 is equivalent to show that K(µ′′,v′′A)

K(µ′,v′′A)
≥

µ′
√
vHB+(1−µ′)

√
vLB

µ′′
√
vHB+(1−µ′′)

√
vLB
. It then suffi ces to prove that K(µ′′,v′′A)

K(µ′,v′′A)
≥ K(µ′′,v′A)

K(µ′,v′A)
, i.e.,

1
v′′
A

+ µ′

vH
B

+ 1−µ′

vL
B

1
v′′
A

+ µ′′
vH
B

+ 1−µ′′
vL
B

≥

1
v′
A

+ µ′

vH
B

+ 1−µ′

vL
B

1
v′
A

+ µ′′
vH
B

+ 1−µ′′
vL
B

. This holds, since F (vA) =
1
vA

+ µ′

vH
B

+ 1−µ′

vL
B

1
vA

+ µ′′
vH
B

+ 1−µ′′
vL
B

increases with vA.

Proof of Proposition 5

(i) If µopt = 1, the first case occurs, TE∗(µ0) stays at the level of TE(µopt) as µ0 moves

from 0 to 1, since µopt = 1 and µ0 ≤ 1 always holds. We plot an example in the following.

Case 1: µopt = 1

If µopt < 1, the second case occurs, i.e., TE∗(µ0) remains constant at the level of TE(µopt)
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until µ0 = µopt and falls once µ0 exceeds µopt. We plot an example in the following figure.

Case 2: µopt < 1

(ii) The total effort TE(µ) =

[
µ
√
vHB+(1−µ)

√
vLB

][
µ√
vH
B

+ 1−µ√
vL
B

]
1
vA

+ µ

vH
B

+ 1−µ
vL
B

given by (2) increases with

vA.

(iii) We rewrite TE(µ) = K(µ)
(
µ
√
vHB + (1− µ)

√
vLB

)
, where K(µ) =

µ√
vH
B

+ 1−µ√
vL
B

1
vA

+ µ

vH
B

+ 1−µ
vL
B

.

dTE

dvHB

=
d

dvHB

 µ√
vHB

+ 1−µ√
vLB

1
vA

+ µ
vHB

+ 1−µ
vLB

(µ√vHB + (1− µ)
√
vLB

)
+

 µ√
vHB

+ 1−µ√
vLB

1
vA

+ µ
vHB

+ 1−µ
vLB

 µ

2
√
vHB

=

−1
2

µ

vA

√
(vHB )

3 + 1
2

µ2

(vHB )
2√

vHB
+ µ(1−µ)

(vHB )
2√

vLB
− 1

2
µ(1−µ)√
(vHB )

3
vLB(

1
vA

+ µ
vHB

+ 1−µ
vLB

)2

(
µ
√
vHB + (1− µ)

√
vLB

)

+

1
2
µ2

vHB
+ 1

2
µ(1−µ)√
vHB v

L
B(

1
vA

+ µ
vHB

+ 1−µ
vLB

)2

(
1

vA
+

µ

vHB
+

1− µ
vLB

)
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=
1(

1
vA

+ µ
vHB

+ 1−µ
vLB

)2

 −1
2

µ2

vAv
H
B

+ 1
2

µ3

(vHB )
3 + µ2(1−µ)√

(vHB )
3
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As for (iv), we consider an example by letting vHB = 15, vA = 2, µ = 0.9, and the

resulting total effort is non-monotone in vLB, since
dTE
dvLB
|vLB=0.6 ≈ 0.182 14 > 0, dTE
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−1. 368 5× 10−2 < 0, and dTE
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